02.07.2022

Объекты живой природы. Отличия живого вещества от неживого Отличия неживой природы от живой


Изучая универсальные закономерности эволюции и самоорганизации сложных систем, синергетика открывает глубинный изоморфизм живого и косного, общность образцов эволюции и структурных образований в царствах живой и «мёртвой» природы Она выносит на обсуждение целый ряд неожиданных вопросов: Какие структуры «выживают» на «теле» природы? Почему и структуры косной природы следуют некоторым «ритмам жизни»? Эволюционируют ли атомы? Существует ли память в «неживой» природе? Как происходит сборка сложной структуры? Обо всём этом - в статье Елены Николаевны КНЯЗЕВОЙ и Сергея Павловича КУРДЮМОВА.

Синергетика об аналогах живого в «неживой» природе

Что «предпочитает» природа? Спектры эволюционных форм

Похоже, что природе доставляет удовольствие варьировать один и тот же механизм бесконечно различными способами. Д.Дидро

Принято думать, что природа бесконечно разнообразна, что она ничем не ограничена в варьировании своих эволюционных механизмов и форм организации. Но синергетика демонстрирует обманчивость подобного взгляда.

Прежде всего, появляется парадоксальное представление о том, что в открытой среде (с источниками и стоками энергии), с диссипацией энергии, могут возникать и устойчиво самоподдерживаться локализованные процессы — диссипативные структуры . В сплошной среде может возникать локализация — очаги более интенсивных процессов, например, структуры горения . Кроме того, не какие угодно структуры могут реализоваться в данной среде.

Для некоторых классов открытых нелинейных сред (систем) установлено, что в них потенциально заключены целые спектры структур (спектры эволюционных форм организации), которые могут возникнуть лишь на развитых, асимптотических, стадиях процессов. Это — одна из фундаментальных задач, которая называется в синергетике задачей о поиске собственных функций нелинейной среды , то есть устойчивых способов организации процессов в среде, которые ей адекватны и к которым эволюционируют со временем все другие её состояния. Сколько и какие относительно устойчивые структуры могут самоподдерживаться в качестве метастабильно устойчивых в данной природной системе — определяется сугубо внутренними её свойствами.

Поиск спектров эволюционных форм природы — это, по существу, сверхзадача, близкая к так называемой задаче Гейзенберга в ядерной физике, когда требуется написать нелинейные уравнения некой среды, которая как самоорганизующаяся давала бы устойчивые состояния в виде спектра элементарных частиц.

До сих пор, например, непонятно, почему количество химических элементов (типов атомов) ограничено. Почему атомов порядка сотни, а не, скажем, существенно больше или меньше? Почему существует дискретный набор зарядов ядер атомов, или спектр типов атомов? Почему заряды целочисленны? Эти вопросы затрагивают глубинную физическую, квантово-механическую основу описания химических свойств и реакций.

Есть основания поставить задачу получения спектра атомов как структур самоорганизации некой открытой нелинейной среды, наподобие спектра форм, масс, зарядов. Уже показано, в частности, что существует глубокая аналогия между собственными функциями горения нелинейной среды на квазистационарной стадии и собственными функциями стационарной задачи Шрёдингера в центральном поле сил с кулоновским потенциалом . (В названной работе осуществлён вывод линейного стационарного уравнения Шрёдингера с кулоновским потенциалом из более общего квазилинейного уравнения теплопроводности с нелинейным источником; кроме того, найдены условия нормировки и непрерывности функции.) За этим результатом стоит целая серия естественных следствий, и, прежде всего, попытка построить модель атома как структуру горения некой среды и предложить другое понимание причин квантования, связанное с особой устойчивостью инвариантно-групповых решений, выступающих в качестве аттракторов-целей развития.

Ограниченное количество собственных функций квазилинейного уравнения теплопроводности с источником является математическим аналогом конечного числа собственных структур нелинейной среды, а исходя из данной аналогии, — счётного количества типов атомов, химических элементов. При таком подходе квантование должно стать следствием решения классической, но нелинейной задачи. Весь спектр атомов, как он представлен в периодической системе Д.И.Менделеева, должен быть получен в виде спектра собственных функций среды, определяемой соответствующими нелинейными дифференциальными уравнениями.

Вообще дискретность возможных структур организации — это то общее, что связывает мир живого и «неживого», хотя это, возможно, и не очевидно. Системы живого открыты и в высокой степени нелинейны, поэтому их ответ на внешнее воздействие может быть многократно сильнее (или слабее) его величины и качественно различным в разных ситуациях. Нелинейность накладывает определённые рамки на типы структур живого. Не всё, что угодно, возможно в качестве метастабильно устойчивого в нелинейном мире. Нелинейность квантует, делает дискретными возможные наборы движений, поз, жестов живых существ .

«Архитектура» живого связана, прежде всего, с движением и развитием живого. Она есть гармоничное сочетание, расположение частей в метастабильное эволюционное целое. Хотя имеется множество типов структур и конфигураций, «архитектура» живого отнюдь не произвольна. Известны, например, базисные виды поступательных движений лошади — аллюры: шаг, галоп, рысь, иноходь. Лошадь идёт не как угодно, а «использует» всякий раз один из своих базисных типов передвижений. В каждом таком типе движения лошади согласованы определённым образом, и переход от одного типа перемещения к другому осуществляется скачком .

Итак, природа имеет внутренние предпочтения к некоторым формам живого и косного. Лишь определённые наборы форм осуществимы в природных средах. А на другие формы наложен эволюционный запрет: они неустойчивы и очень быстро эволюционируют к устойчивым формам организации, «сваливаются» на них.

Структуры-аттракторы как непроявленное

Природа любит скрываться.

Гераклит

Относительно устойчивые структуры, на которые неизбежно выходят процессы эволюции в открытых и нелинейных системах, напомним, называются аттракторами. Поскольку под аттракторами здесь понимаются реальные структуры, а не их изображения в фазовом пространстве (пространстве физических параметров), постольку употребляется словосочетание: структуры-аттракторы .

Простейшие математические модели нелинейных открытых сред свидетельствуют, что таковая система таит в себе определённые формы организации . Структуры-аттракторы потенциально заложены в среде, задаются сугубо её собственными нелинейными свойствами. Они есть НЕПРОЯВЛЕННОЕ — «дух становления» системы. Они закладывают тенденции процессов в ней.

Потаённость, потенциальность, оборотная сторона бытия присуща и миру человеческому, и миру «неживой» природы. И в среде плазмы, и в живом веществе, и на поле человеческого сознания, и в теле культуры, и в среде научного сообщества есть свои внутренние тенденции, стремления — «предпочтения». И нет смысла им противиться. Всё равно они, подобно сильному речному течению, заставят двигаться в нужном направлении: в поле притяжения одного образца- аттрактора — именно к нему, а в поле притяжения другого образца-аттрактора — к иному. В этом смысле идеи Платона, Аристотеля и мудрецов древнего Китая звучат чрезвычайно конструктивно.

Сплошная открытая и нелинейная среда, наряду с несовершенными проявленными формами. содержит потенциальное бытие, идеальные структуры. Она «наполнена» ещё не состоявшимися формами. Каждая из этих структур-аттракторов соответствует собственной тенденции среды, имеет шанс реализоваться. На упрощённых математических моделях можно видеть всё поле возможных путей эволюции, все «Дао» среды.

С выбором траектории развития, с выходом на одну из структур-аттракторов, все другие эволюционные пути как бы закрываются. А поскольку в ходе развития может изменяться и сама среда, её внутренние свойства, то способно трансформироваться, несколько перестраиваться всё поле допустимых изменений, а некоторые структуры-аттракторы, некоторые цели могут и не осуществиться.

Достаточно серьёзным является утверждение, что открытые сложные системы имеют множество путей эволюции. Отсюда всё разнообразие форм, особенно в нелинейном мире. Поставленные в определённые условия, мы всякий раз реализуем одну из возможных форм организации, единственную из всех потенциальных структур. Выход на структуру-аттрактор определяется некими принципами наиболее устойчивого развития процесса, причём именно устойчивого развития, а не стационарного состояния.

«Ритмы жизни» природы

Мудрость нам единая дана:

Всему живому идти путём зерна.

В.Ф.Ходасевич

Никто не будет спорить с тем, что всё живое подвержено ритмам жизни. Диалектика жизни, циклической смены состояний — подъёма и спада активности, бодрствования и сна, жизни и смерти — символически представлена в восточном образе инь-ян. Пик расцвета содержит в себе «червоточину» падения, ночь начинается в полдень, когда ян слабеет и в нём начинает разрастаться «зерно» инь. Как говорится в одной из даосских притч, «в жизни существует зарождение, в смерти существует возвращение, начала и концы друг другу противоположны, но не имеют начала, и [когда] им придёт конец, — неведомо» .

Зерно, инь , — это сплошная потенциальность, таящая в себе устремлённость. А растение, ян, — это уже ставшее, актуализированное. Инь символизирует неопределённость и неоднозначность, блуждание в эволюционном лабиринте, а ян — реализацию цели и построение целого, некую завершённость. Синергетика убедительно демонстрирует нам, что в самом фундаменте природы, как живой, так и косной, заложен принцип инь-ян , наблюдаются процессы развёртывания и свёртывания, эволюции и инволюции, роста и вымирания.

Широко распространённые в природе нелинейные положительные обратные связи (когда следствие «подстёгивает» действие причины. — Ред .) обусловливают развитие структур в режиме с обострением , а это свидетельствует о том, что «время жизни» структур ограничено. Под режимами с обострением понимаются сверхбыстрые процессы, когда характерные величины (температура, энергия, концентрация, денежный капитал и т.д.) неограниченно возрастают за конечное время, называемое временем обострения . Если фактор, создающий неоднородности в среде (действие нелинейных объёмных источников), работает сильнее, чем рассеивающий (диссипативный) фактор, то возникают локализованные процессы и волны горения, сходящиеся внутри области локализации. Процесс развивается всё более интенсивно в сужающейся области вблизи максимума. Это — так называемый LS-режим с обострением, сопровождающийся концентрацией (ям), но чреватый десинхронизацией внутри системы.

Поэтому возникшая в LS-режиме сложная локализованная структура лишь относительно устойчива. Вблизи момента обострения она становится неустойчивой, чувствительной к малым возмущениям и распадается (это уже действие инь. — Ред. ). Наличие момента обострения, то есть конечность времени существования сложной структуры, само по себе поразительно. Чтобы возникла структура, необходим LS-режим, а последний приводит к неустойчивости. Получается, что сложная структура существует только потому, что она существует конечное время! Жить конечное время, чтобы вообще жить! Или иначе: лишь смертное способно к самоорганизации («Препятствиями растём!» — Ред. ). Хотите получить локализацию, сложную структуру — значит её время реализации ограничено моментом обострения. Сам факт преодоления хаоса , удержания его в определённой форме предполагает конечность жизни сложной структуры .

И ещё один не менее важный результат: для широкого класса уравнений с сильно нелинейными источниками показано существование двух противоположных, взаимодополнительных режимов . Предполагается, что можно избежать процесса распада сложной структуры, развивающейся в LS-режиме роста (температуры) с обострением, если вовремя (за счёт флуктуаций — хаоса) происходит переключение на иной режим — HS-peжим; тогда снижается интенсивность (падает температура), и «неограниченно разбегаются волны», возобновляются процессы «по старым следам». Распад, хотя бы частичный, заменяется объединением, максимальное развитие неоднородностей — их замыванием, сглаживанием, растеканием, синхронизацией .

В результате вычислительных экспериментов получено и исследовано пока лишь переключение с HS- на LS-режим . Обратное переключение, с LS- на HS-режим, для сред с сильной нелинейностью можно рассматривать как гипотезу, как итог теоретического моделирования (на основе анализа фазовой плоскости, полученной методом осреднения).

Синергетика склоняет нас к выводу, что законы ритма , циклической смены состояний, универсальны . Для человека это — день и ночь, смена его бодрствования и сна. В природе это — лето и зима. В тепле биологические процессы ускоряются, а в холоде — замедляются. Такого рода пульсации характерны и для косной природы. Известны колебательные режимы в химических реакциях (в реакции Белоусова-Жаботинского — «химические часы»). Согласно одной из космологических гипотез, если средняя плотность вещества во Вселенной больше некоторой критической, то сегодняшняя стадия расширения наблюдаемой Вселенной, «разбегания всего от всего», должна смениться стадией сжатия, «схлопывания к центру» . Развиваются представления о пульсационном развитии Земли и синхронной с ним эволюции биологической жизни на планете: планета то расширяется, то сжимается — будто дышит.

Переключение HS и LS-режимов является математическим эквивалентом процессов типа инь-ян. LS-режим — это обострение, ускорение процессов, стягивание к некоему центру и проявление потенциального; HS-режим — это, наоборот, замедление процессов и разлёт, «возобновление старых следов», погружение в прошлое, обращение к царству непроявленного.

Стареют ли атомы?

Снова будут небеса,

Не такие же, как наши...

Ф.Сологуб

В квантовой механике утверждается неразличимость, тождественность всех элементарных частиц одного сорта, а равным образом — и атомов. Предполагается, что все микрообъекты конкретного типа одинаковы, поэтому нельзя отличить, скажем, один фотон от другого или один атом водорода от другого атома водорода.

Синергетический взгляд на мир - взгляд эволюционный . Эволюция имеет сквозной характер. Она пронизывает все уровни организации косного и живого. Считается, что нынешняя эра эволюции Вселенной связана с разлётом галактик. С эволюционной точки зрения можно попытаться рассмотреть и такой объект, как атом. Тогда и на атомном уровне организации мира просматриваются аналоги жизни и даже истории.

Как уже упоминалось, можно подойти к пониманию квантово-механической реальности, решая классическую задачу, квазилинейное уравнение теплопроводности с нелинейным источником. И в этом случае возможна модель атома как структуры горения нелинейной среды. Разумеется, такова лишь постановка для дальнейшего исследования.

Стабильный, с неизменными уровнями атом, каким он считается в стационарной задаче Шрёдингера в квантовой механике, соответствует подобного рода модели — развитию процессов в режимах с обострением, но, вероятно, только на квазистационарной стадии. (Режимы с обострением, наряду со стадией сверхбыстрого нарастания процессов, имеют и длительную начальную квазистационарную стадию.)

Итак, модель водородоподобного атома описывается уравнением теплопроводности с распределённой плотностью и источником, причём некие неоднородности температуры соответствуют устойчивым состояниям (уровням) атома. В данной задаче имеются — горение, теплопроводность (рассасывающий неоднородности фактор) и заданное распределение плотности. На квазистационарной стадии распределение температуры практически не меняется. Поэтому можно полагать, что мы имеем дело с уровнями, «замершими» на определённых расстояниях от центра.

Но если мы начинаем рассматривать большие промежутки времени, выходить за пределы квазистационарной стадии, то обнаруживаем, что «волны горения» сходятся, сбегаются к центру, к аналогу ядра атома. «Жизни» атома соответствует LS-режим с обострением, режим «сбегающейся волны», когда интенсивность процесса увеличивается во всё более узкой области вокруг центра. Взгляд на атом как на локализованный квазистационарный процесс в среде, имеющий сложную структуру, по-видимому, плодотворен, ибо он позволяет объяснить некоторые факты, к примеру, эффект «красного смещения» спектральных линий у далёких галактик.

До сих пор предполагается, что ряд различных факторов может порождать феномен красного смещения. Во-первых, согласно привычному, наиболее распространённому толкованию, этот феномен может быть обусловлен разлётом галактик па нынешней стадии эволюции Вселенной, сопровождающимся эффектом Доплера. Во-вторых, некоторые учёные придерживаются той версии, что за эффект «покраснения квантов» ответственно временное изменение квантов излучения — «старение» квантов. В-третьих, в рассматриваемой нами модели этот эффект может быть вызван «старением» самих атомов. Здесь всё построено на эволюции во времени, в том числе, и атом может представлять собой меняющуюся во времени организацию.

Свет от галактик, которые находятся на значительных расстояниях от Земли, доходит до нас за огромные промежутки времени. Мы видим эти галактики такими, какими они были многие миллионы лет назад. Это далёкое прошлое, свидетельства о котором к нам попадают со всё более значительных расстояний, соответствует, с нашей точки зрения, ранним стадиям эволюции атомов. Уровни же тех атомов должны были находиться дальше от центра, а затем они медленно приближаются к ядру. Так что по мере ухода в прошлое мы наблюдаем атомы, энергетические уровни которых расположены всё дальше от ядра. А это как раз эквивалентно эффекту красного смещения. И в принципе можно оценить его константу, исходя из тех констант нелинейной среды, которые мы получили, моделируя атом как сходящиеся волны горения в LS-режиме.

Рост и расширение масштабов Вселенной может означать, что на макроуровне, в отличие от микроуровня, имеет место HS-режим растяжения всех масштабов, даже если галактики не имеют никакой механической скорости — просто из-за «разбухания самого пространства», из-за HS- режима охлаждения. Для наблюдателя же картина выглядит так, будто галактики разлетаются с большой скоростью.

Попытки построить модель атома как некой эволюционирующей структуры, имеющей свою историю, представляют огромный интерес. Если удастся последовательно развить такую модель, то станет возможным допускать, что и в микромире разворачиваются эволюционные процессы, но изменения ощутимы лишь за гигантские промежутки времени.

Имеет ли «неживое» память?

Но твой, природа, мир о днях былых молчит

С улыбкою двусмысленной и тайной.

Ф.И.Тютчев

Некоторые любопытные явления нелинейного мира указывают на элементы «памяти» в том числе и в процессах косной природы.

Во-первых , это — возобновление старых следов в HS-режиме . Выше говорилось о том, что в средах с достаточно сильной нелинейностью, вероятно, может происходить самопроизвольное переключение LS- и HS-режимов. Режим нарастания интенсивности процесса и сбегания к центру (LS- режим) сменяется режимом охлаждения и растекания (HS-режимом), процессы типа ян сменяются процессами типа инь. В HS-режиме происходит расплывание процесса преимущественно «по старым следам» , так как теплопроводность таких участков, из-за нелинейности коэффициента теплопроводности, существенно выше, чем «холодных» областей остальной среды.

Но всё-таки расплывание, хотя и слабо, осуществляется и в холодную среду, то есть структура всё более симметризуется, её форма вырождается из сложной в простую. Поэтому, хотя замыкание циклов взаимного переключения противоположно направленных режимов намного продлевает «жизнь» структуры с сильной нелинейностью, однако, оно не может сделать её бессмертной. Накопление элементов «памяти» приводит к «старению» и, в конце концов, к «смерти» сложных структур, несмотря на их ритмический образ жизни типа инь-ян .

В процессах эволюции сложных структур прошлое не исчезает. Оно остаётся существовать в ином, более медленном, или менее интенсивном темпомире, «тонком». Интенсивные процессы у центра в LS-режиме — это быстрый темпомир. А следы растекания и угасания в HS-режиме, остающиеся на периферии сложной структуры, — это медленный темпомир. Возврат к прежним медленным процессам в рассматриваемой модели мира представляет собой, в некотором смысле, аналог подсознания и ещё более глубокой видовой памяти. Вообще говоря, ничто не исчезает, но всё продолжает гореть в ином, медленном и мало ощутимом для нас темпомире («субъективном». — Ред.). Аналогично, подсознание человека является хранилищем всего того, что человек когда-либо видел, слышал, делал и знал.

Может быть, и не стоит этому слишком удивляться. Ведь в физике давно известны такие процессы, когда поведение системы зависит не только от величины внешнего воздействия на неё и собственных флуктуации сейчас, но и от характера процессов, протекавших в ней в предшествующие моменты времени. Это, например, гистерезис — остаточная намагниченность, остаточные деформации и т.п. Тем самым, история системы влияет на её поведение в настоящем.

Во-вторых , память — это информация о прошлом, содержащаяся в сложной эволюционной структуре. Определённые фрагменты (пространственные области) синхронического среза структуры являются индикатором в целом её прошлого развития, а другие фрагменты — будущего. Например, если структура развивается с обострением в схлопывающемся к центру режиме (LS-режиме), то наличный ход процессов в центре свидетельствует о характере прошлого развития всей структуры , а ход процессов на периферии сейчас — о характере её будущего развития .

В-третьих , память — это строительство по образцу , размножение по матрице, имеющее место в эволюционных процессах. Элементы памяти играют роль катализатора, позволяют существенно ускорить эволюцию, не повторять длительный исторический путь блужданий и случайного отбора. Кроме того, через память сложные структуры объединяются, связываются в единое целое. Это — эволюционный клей, если можно так выразиться. Наконец, существует тонкое взаимодействие, когда структуры могут быть соединены через слабые следы («хвосты») медленных, казалось бы, совершенно исчезнувших процессов, через «просачивание» процессов за пределы области их эффективной локализации. При топологически правильном объединении происходит выход в другой темпомир, ускорение развития возникшей структуры.

«Природа знать не знает о былом», — говорил нам Ф.И.Тютчев. Синергетика заставляет нас усомниться в правильности этих слов. Наверное, природа всё-таки знает о былом. Проблема же состоит в том, чтобы научиться находить в эволюционных структурах информацию о её прежних состояниях и процессах.

Память... Может быть, это не только осознание прежнего опыта, но и сама информация о прошлом, разлитая по Вселенной. Представление о памяти объективизируется. Память — это не то, что помним мы, но то, что помнит нас. Память «неживого»... Разве это просто метафора?

«Когда Великое Дыхание совершает выдох, всё, пребывающее в узах форм, должно расширяться. В результате этого расширения, когда достигается последняя степень его сдерживания, эта форма — будь то солнце, планета или семя растения — должна взорваться, разбросав свои фрагменты. Каждый фрагмент, или меньший центр, уносится в пространство, и таким образом образуются новые планеты, новые звёзды, новая растительность и новые жизни».

(Учение Храма. Т. 1. М.. МЦР, 2001. С. 320)

Два пути природы: путь отбора через хаос и путь резонансного возбуждения

И тайна жизни — два пути —

Ведут к единой цели оба.

И всё равно, куда идти.

Д.С.Мережковский

Длительный и многотрудный путь эволюции природы — это путь преодоления хаоса и возникновения структур, случайных вариаций, жестокой конкуренции и выживания сильнейших. Диссипативные процессы осуществляют «выедание». Затухание «ненужного», благодаря хаосу на микроуровне (вообще, на более низком уровне организации. — Ред.), лежит в основе выхода на структуры-аттракторы эволюции. Так протекала в течение нескольких миллиардов лет космическая и биологическая эволюция. Но является ли такой путь единственно возможным?

Живая природа научилась многократно сокращать время выхода на нужные структуры посредством составления генетических программ. Носитель наследственности ДНК становится некой матрицей, по которой строятся сложные белковые тела, биологические среды. Можно создавать сложное достаточно быстро, не повторяя весь чудовищно трудоёмкий и длительный путь эволюции природы. Она умеет в миллионы раз сокращать его — от простой клетки к сложнейшему организму. Ведь ни одна живая система в ходе своего онтогенеза не проходит снова весь филогенетический путь эволюции. В этом великая тайна морфогенеза!

Строительство по образцу, матричное дублирование, является некой формой резонансного возбуждения . Это механизм «штамповки» типа редупликации ДНК, действующий в открытых нелинейных системах.

Да, оба пути ведут к единым целям — к структурам-аттракторам эволюции. И в этом Д.С.Мережковский прав. Но не всё равно, куда идти, какой путь выбрать.

Отбор через хаос — это медленный путь случайных вариаций и эволюционного отбора, постепенного перехода от простых структур ко всё более сложным. Путь же резонансного возбуждения — это быстрый переход к сложному, многократное сокращение временных затрат и материальных усилий, инициирование желаемых и — что не менее важно — реализуемых на данной среде структур. Вместе с тем, это как бы и путь йоги, когда медитация способствует кратчайшему выходу на «структуру-аттрактор», и происходит кристаллизация духа, высшего знания, таланта.

Вся природа устроена так, что в ней действуют принципы экономии и рост скорости эволюции. Ускорение темпа процессов имеет место в режимах с обострением, которые характерны как для мира живой, так и «мёртвой» природы при наличии в последней «петель» нелинейной положительной обратной связи. Посредством резонансного возбуждения происходит сжатие процессов во времени.

Природа выработала в результате эволюции определённые механизмы, которые в простых нелинейных моделях преднамеренно воссоздаются через резонансные воздействия на открытую нелинейную среду. Надо правильно «укалывать» среду — производить малые воздействия на неё в нужное время и в нужном месте. Надо правильно пространственно распределять эти воздействия, ибо важна не сила (величина, длительность, всеохватность и т.п.), а его пространственная конфигурация, топология, в частности, пространственная симметрия. Если воздействовать на среду конфигурационно согласованно с её собственными структурами, то она будет развёртывать перед нами скрытые в ней разнообразные формы. Произойдёт самоорганизация, раскрытие сокровенного, реализация потенциального.

И пусть не пугают нас филистёры призраком китайского или нашего российского Великого скачка. Природа делает эти скачки, осуществляет это колоссальное сжатие времени постоянно, во всех актах развития живого.

Ускорение процессов. Катализ

Мгновение бежит неудержимо...

Н.Гумилёв

И в «мёртвом» есть механизмы ускорения синтеза сложного.

Катализ является одним из наиболее интересных явлений, изучаемых в современной химии. Разрабатываются, в частности, модели процессов, протекающих на поверхности катализатора. На поверхность кристалла, то есть на какую-то определённую структуру решётки, случайным образом из среды, в которой происходит каталитическая реакция, попадают атомы и закрепляются на решётке в результате адсорбции или/и поверхностных реакций. Решётка играет роль матрицы, которая позволяет удерживать атомы на заданных расстояниях. Можно сказать, что на ней со временем, с некоторым запаздыванием осуществляются аналоги многочастичных столкновений, которые изучаются в синергетике .

Причиной сверхбыстрого развития процесса, протекающего на решётке, является резкий рост вероятности сложной реакции — аналога столкновения многих частиц. При каталитическом процессе происходит «размножение» продукта. Решётка, на которой идёт каталитическая реакция, является не просто ускорителем процесса, но и средством производства вещества необходимого типа.

Катализатор-матрица позволяет неслучайным образом суммировать случайно попавшие на неё частицы (например, атомы), то есть осуществлять сложные коллективные взаимодействия. Ускорение процессов имеет место благодаря определённой пространственной организации каталитической поверхности, конкретному расположению, диспозиции атомов решётки. Здесь просматривается глубокая связь с представлениями о резонансном возбуждении в синергетике. Правильная топология воздействия на среду равносильна возбуждению в ней собственной структуры, правильному объединению атомов в сложную молекулу. Так, формой резонансного возбуждения в биологии является редупликация ДНК, строительство по образцу, что позволяет существенно ускорять биологические процессы.

Почему природа столь экономна?

Природа подобна рачительному хозяину, который бережлив там, где нужно, для того чтобы иметь возможность быть щедрым в своё время и в своём месте. Она щедра в своих действиях и бережлива в применяемых ею причинах.

Г.Лейбниц

Во многих случаях в химии просто необъяснимо, почему молекула имеет именно такую стереометрию объединения, а не какую-то другую. Часто это рассматривается просто как экспериментальный факт. Возможный, едва ли не единственный, способ объяснения химических связей и химических структур — это объяснение на основании вариационных принципов. Показывается, что определённые конфигурации объединения атомов означают наиболее устойчивые состояния, ибо соответствуют (способствуют) минимизации энергии или свободной энергии.

Нелинейный анализ и синергетика позволяют принципиально по-другому подойти к поиску наиболее устойчивых состояний и структур природы. Такой поиск можно вести, исходя вовсе не из вариационных принципов минимизации функционалов (энергии, действия и т.п.). Более того, неплохо было бы понять, откуда берутся сами вариационные, или экстремальные, принципы.

В синергетике исследуются механизмы самоорганизации природы, иначе говоря то, как происходит выход на наиболее устойчивые состояния.

Во-первых, показывается, что таких состояний для всякой более или менее сложной системы может быть много. Решение нелинейной задачи приводит к своего рода квантовому эффекту, к выделенности некоторых состояний, к дискретности путей эволюции. Известны, например, два типа «застройки» среды при конвективной неустойчивости. Это — классические, хорошо известные шестигранные «ячейки Бенара», образующие структуру типа «пчелиных сот», или же менее устойчивые четырехгранные ячейки.

Во-вторых, раскрывается сам механизм «выпадения» па устойчивые состояния, на структуры-аттракторы эволюции. Это механизм «преодоления» хаоса, конкуренции двух начал — хаотического, рассеивающего, действующего через диссипативные процессы, и начала, наращивающего неоднородности в среде (благодаря нелинейным объёмным источникам). Их взаимное действие приводит к «выеданию», обусловливает как бы силу притяжения к аттрактору, отбор из будущего, в соответствии с идеальным образцом, с одной из структур-аттракторов.

Синергетика обнаруживает и иной выработанный природой способ экономии, сжатия процессов эволюции по времени. Это — резонансное возбуждение. Малое, но топологически правильно организованное воздействие, которое, как говорил Лейбниц, «в своё время и в своём месте», оказывается чрезвычайно эффективным. Ибо оно эквивалентно устойчивым состояниям самой природной среды, собственным формам её организации.

Можно сразу возбудить в среде одну из структур-аттракторов и притом ту, которая желательна. Можно выйти на аттрактор, минуя длительный путь эволюции к нему с неизбежным уничтожением всего того, что не соответствует его правильной организации. Писатель-фантаст Иван Ефремов сказал бы, что можно минимизировать зло — инферны. Да, устраняется лишнее выжигание среды и радикально сокращается время выхода на аттрактор, сжимается время эволюции. Но существует и опасность больших скачков. Значит надо знать законы правильного устройства аттракторов, адекватных данной среде, а не навязывать системе несвойственные ей формы организации.

Принципы экономии играют свою роль и при объединении структур. При правильном ходе такого процесса приближается момент обострения — во всей объединённой области устанавливается более высокий темп. Целое развивается быстрее составляющих его частей.

Инварианты вокруг нас

Послесловие от редакции

Идеи синергетики заимствованы из жизни многоликой Природы — как бы на первый взгляд они ни были отвлечённы. Ведь законы организации (строения и развития) неисчислимых природных систем универсальны, причём независимо от того — живые они либо косные. Мы имеем в виду, прежде всего, общий принцип гармонизации систем — друг с другом и их частей. Это принцип золотого отношения , прослеживаемый и по пространству, и во времени, то есть и для структур, и для процессов, — на любых масштабах от микро- до мегамира. Особенно ярко этот принцип явлен в биосфере, в человеке, закреплён в его психике, формируя, формализуя принцип КРАСОТЫ, отражающий закон ЦЕЛЕСООБРАЗНОСТИ. Именно благодаря общим правилам гармонии, обеспечивающим, пусть временную, устойчивость, равновесие в той или другой системе, внутри даже совсем непохожих друг на друга образований, устанавливается в целом, к примеру, утроение их характерных масштабов.

В Природе на всех её уровнях неукоснительно действует принип АНАЛОГИИ, столь почитаемый в древних доктринах, — закон подобия, изоморфизма. Он обеспечен её фрактальным , «голографическим» устройством, когда, как правило, в центре системы (в начале, в прошлом!) прослеживается спиральная структура («пружина потенции»), а на периферии (в конце, в будущем!) — ветвящаяся , турбулентная квазихаотичная организация, замыкающая систему, обеспечивая ей обмен с окружающим внешним миром («протянутая рука»).

И не удивительно, что имеется определённая глубинная связь между относительным расположением планетных уровней в Солнечной системе (значит и атомных!) и характерными этапами жизни человека. Так мы сами и всё вокруг своеобразно воплощает действие синергетического принципа резонансного возбуждения . А следовательно, пространство должна наполнять некая невидимая иноматериальная «тонкая» среда, в которой и происходит мгновенный Прим. ред .

Напрашиваются параллели с прекращением процесса перевоплощений, когда искуплены все «кармические долги» периодических пребываний на земном плане и для индивидуализированного самосознания наступает пора пребывания в мире «божественного сознания». - Прим. ред .

Значит то, что происходит в чёрной дыре (см. «Дельфис» № 4(28)/2001), если можно так выразиться, то есть в сингулярности, или за пределами наших нынешних физических представлений о пространстве, времени, гравитации и т.д., содержится как бы в ПРОШЛОМ? Например, «нутро», или ядро, галактик — это тоже их прошлое? Чёрные дыры — это как бы «окна назад», а гравитационный коллапс, приводящий к явлению чёрной дыры, способ возврата в это прошлое? - Прим. ред . ] Еленин Г.Г., Слинько М.Г . Математическое моделирование элементарных процессов на поверхности катализатора//Наука, технология, вычислительный эксперимент. М., Наука, 1993. С. 99.

Министерство образования и науки РФ

Московский государственный университет геодезии и картографии

Кафедра прикладной информатики

На тему «Отличие живой природы от неживой»

Специальность «Концепция современного естествознания»

Москва 2010г.

Введение

Живая природа

Неживая природа

Теория биологической эволюции

Гипотезы происхождения жизни

Различия живой и неживой природы

Заключение

Список используемой литературы

Введение

Грандиозное многообразие окружающего нас мира распадается на две большие области: неживую и живую природу. Природа - материальный мир Вселенной, в сущности - основной Объект изучения науки. В быту слово «природа» часто употребляется в значении естественная среда обитания. Основные естественные науки, посвященные изучению неживой природы , - это астрономия, физика и химия. Исследованием живой природы занимается биология (от греч. bios - жизнь и logos - учение, наука).

Представленная работа посвящена теме "Отличие живой природы от неживой".

Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер.

Актуальность настоящей работы обусловлена большим интересом к теме различия живой и неживой природ в современной науке. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.

В рамках достижения поставленной цели нами были поставлены и решены следующие задачи:

1. Провести анализ живой природы

2. Провести анализ неживой природы

3. Раскрыть сущность теории биологической эволюции

4. Изучить гипотезы происхождения жизни

5. Сравнить живую и неживую природу и выявить различия

Работа имеет традиционную структуру и включает в себя введение, основную часть, состоящую из 5 глав, заключение и список литературы.

Живая природа

Живая природа - совокупность организмов. Делится на пять царств: бактерии, грибы, растения и животные. Живая природа организуется в экосистемы, которые составляют биосферу. Основной атрибут живой материи - генетическая информация, проявляющаяся в репликации и мутации. Развитие живой природы привело к появлению человечества.

Интерес к познанию живой природы возник у человека очень давно, еще в первобытную эпоху, и был тесно связан с его важнейшими потребностями: в пище, лекарствах, одежде, жилье и т.п. Однако только в первых древних цивилизациях люди стали целенаправленно и систематически изучать живые организмы, составлять перечни животных и растений, населяющих разные регионы земли. Наука, занимающаяся изучением живой природы, получила название биология. В настоящее время биология представляет собой целый комплекс наук о живой природе. Причем существуют различные классификации последних. Например, по объектам исследования биологические науки подразделяются на вирусологию , бактериологию , ботанику , зоологию и антропологию .

По уровню организации живых объектов выделяются следующие науки:

· анатомия , посвященная изучению макроскопического строения животных;

· гистология , исследующая строение тканей;

· цитология , изучающая клетки, из которых состоят все живые организмы.

По свойствам, или проявлениям живого, биология включает в свой состав:

· морфологию - науку о структуре, или строении живых организмов;

· физиологию , которая изучает их функционирование;

· молекулярную биологию , исследующую микроструктуру живых тканей и клеток;

· экологию , рассматривающую образ жизни растений и животных и их взаимосвязи с окружающей средой;

· генетику , которая изучает законы наследственности и изменчивости живых организмов.

Все эти классификации в известной степени условны и относительны и пересекаются друг с другом в различных пунктах. Такая многоплановость комплекса биологических наук во многом обусловлена необычайным многообразием живого мира.

К настоящему времени учеными обнаружено и описано более одного миллиона видов животных, около полумиллиона видов растений, несколько сотен тысяч видов грибов, более трёх тысяч видов бактерий. Причем мир живой природы исследован далеко не полностью. Число пока еще не описанных видов живого оценивается, по меньшей мере, в один миллион. Кроме того, огромное количество видов живых организмов давно вымерло. По современным научным данным за все время развития жизни на Земле существовало колоссальное количество различных видов живых существ - приблизительно пятьсот миллионов.

Понятно, что живая природа представляет собой качественно новый, более высокий уровень организации материи, или виток мировой эволюции, поднявшийся на необыкновенную высоту по сравнению со ступенью неживой природы. В чем же заключается столь радикальное отличие живой природы от неживой? Интуитивно все понимают, что такое живое и что - неживое. Однако при попытке определить сущность живого возникают трудности. Оказывается, ответить на вопрос о том, что такое жизнь, довольно непросто.

Например, широко известно определение, предложенное немецким философом XIX в. Фридрихом Энгельсом , согласно которому жизнь - это способ существования белковых тел, важной особенностью которого является постоянный обмен веществ с окружающей их внешней природой. Тем не менее, живая мышь, например, и горящая свеча с физико-химической точки зрения находятся в одинаковом состоянии обмена веществ с внешней средой, равно потребляя кислород и выделяя углекислый газ, но в одном случае - в результате дыхания, а в другом - в процессе горения. Данный пример показывает, что обмениваться веществами с окружающей средой могут и неживые объекты; т.е. обмен веществ является хотя и необходимым, но недостаточным критерием определения жизни. То же самое можно сказать и о белковой природе живых объектов. Так американский ученый Ф. Типлер в своей книге «Физика бессмертия» говорит следующее: «Мы не хотим привязывать определение жизни к молекуле нуклеиновой кислоты, потому что можно вообразить себе существование жизни, которая к этому определению не подходит. Если к нам в космический корабль явится внеземное существо, химическую основу которого составляет не нуклеиновая кислота, то нам все равно захочется признать его живым» Цит. по: Концепции современного естествознания. М.: ЮНИТИ, 1997. С. 159..

Таким образом, невозможно указать только на один какой-нибудь главный, или основополагающий признак, по которому различаются объекты живой природы и неживой. Поэтому современная биология при определении и описании живого исходит из необходимости перечисления нескольких принципиальных свойств живых организмов. При этом подчеркивается, что только совокупность этих свойств может дать представление о специфике жизни. К таким свойствам, или признакам, относятся следующие:

· Живые организмы характеризуются гораздо более сложным устройством, чем неживые тела.

· Любой организм для поддержания своей жизнедеятельности получает энергию из окружающей среды. Большая часть организмов прямо или косвенно использует солнечную энергию.

· Живые организмы активно реагируют на окружающую среду. Если, например, вы толкнете камень, то он пассивно сдвинется с места, а если толкнуть животное, то оно отреагирует активно: убежит, нападет, изменит форму и т.д. Способность реагировать на внешние раздражения - это всеобщее свойство живых существ, как растений, так и животных.

· Живые организмы могут не только изменяться, они также и усложняются. Так, например, у растения появляются новые ветви, а у животного- новые органы, значительно отличающиеся и по внешнему виду, и по устройству от тех, которые их породили.

· Все живое размножается. Причем потомство и похоже на родителей, и в то же время чем-то от них отличается.

· Сходство потомства с родителями обусловлено еще одной важной особенностью живых организмов - способностью передавать потомкам заложенную в них наследственную информацию, которая содержится в генах (от греч. genos - происхождение) - мельчайших и очень сложно утроенных частицах, находящихся в ядрах клеток живых организмов. Генетический материал направляет развитие организма. Вот почему потомки похожи на родителей. Однако наследственная информация в процессе жизни организма, а также во время передачи несколько искажается или меняется. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

· Живые организмы хорошо приспособлены к среде своего обитания. Строение птицы, рыбы, лягушки, дождевого червя полностью соответствует тем условиям, в которых они живут. Этого никак нельзя сказать о неживых телах: камню, например, «все равно», где находиться - он может лежать на дне реки или валяться в поле, или летать вокруг Земли в качестве ее естественного спутника. Однако если мы заставим, например, птицу жить в речных глубинах, а рыбу - в лесу, то эти живые существа, конечно же, погибнут. Говоря проще, основные отличия живого от неживого заключаются в том, что все живые организмы питаются, дышат, растут и размножаются, а неживые тела не питаются, не дышат, не растут и не размножаются.

Исследуя живой организм, биохимик отвечает на ряд вопросов:

1. Из каких химических соединений состоит клетка, ткань, орган или организм в целом?

2. Как взаимосвязаны эти химические соединения, как они образуются и взаимопревращаются?

3. Каким образом регулируются взаимопревращения веществ?

4. Чем биохимически отличается изучаемая клетка, ткань, орган от других клеток, тканей, органов, чем определяется выполнение ими их специфических функций ворганизме?

5. Как связаны превращения веществ с превращениями энергии?

В живой природе также можно выделить основные структурные уровни, или ступени сложности. Первый из них - это молекулярный уровень, представляющий собой предельно малые объекты живого, а именно молекулы ДНК, в которых заключена наследственная информация живых организмов. Следующий уровень является клеточным, за ним следуют органно-тканевый и организменный уровни. Далее идут популяционно-видовой и биогеоценотический, или экосистемный уровни. Биогеоценоз (экосистема )- это участок Земли со всеми живыми организмами, которые его населяют, и неживой среды их обитания; говоря иначе, со всеми компонентами составляющей его живой и неживой природы. Примерами биогеоценозов, или экосистем могут служить лес, озеро, поле и т.п. Завершающей ступенью в иерархии уровней организации живого мира является биосфера , которая представляет собой всю совокупность живых организмов Земли вместе с окружающей их природной средой.

О том, каковы современные научные представления об эволюции и происхождении живой природы, мы поговорим позже.

Неживая природа

Неживая природа, или косная материя, представлена в виде вещества и поля, которые обладают энергией. Она организована в несколько уровней: элементарные частицы, атомы, химические элементы, небесные тела, звёзды, галактика и Вселенная. Вещество может пребывать в одном из нескольких агрегатных состояний (например, газ, жидкость, твёрдое тело, плазма). Развитие Неживой природы привело к появлению Живой природы.

Неживая природ а существует на различных уровнях сложности. Первым из них, по современным представлениям, являются кварки, из которых состоят элементарные частицы. Далее следует уровень атомов, слагаемых из элементарных частиц, затем идут уровни: молекул, макроскопических тел, мегаобъектов, галактик, скоплений галактик, метагалактики и Вселенной. Важно отметить, что каждый последующий уровень не сводится механически к предыдущему. Например, атом не является простой механической суммой образующих его элементарных частиц, а представляет собой нечто более сложное и качественно новое по сравнению с этой суммой, и поэтому никак не сводим к ней. Вспомним, одна из характерных черт третьей, или современной научной картины мира - это антимеханициз , в силу которого не только Вселенную в целом, но и каждый отдельный ее объект нельзя рассматривать как механическую совокупность составляющих частей.

В мире неживой природы действует так называемый принцип наименьшего действия. В соответствии с этим принципом система постоянно переходит от менее устойчивого к наиболее устойчивому состоянию. При этом всякое тело стремится принять такую форму, при которой оно обеспечивает минимум энергии его поверхности, совместимую с ориентирующими силами. Симметрия порождающей среды, в которой образуется тело, накладывается на симметрию тела. Получающаяся при этом форма тела сохраняет те элементы собственной симметрии, которые совпадают с наложенными на него элементами симметрии среды. На вопрос о происхождении и эволюции неживой природы неклассическое естествознание, отвечает с помощью гипотезы Большого взрыва: Не было ни звука, ни света, ни времени, ни пространства; только она, абсолютно черная масса флуктуаций неимоверных энергий, клубилась и пульсировала во мраке, с непреодолимой силой стремясь сосредоточиться в одной единственной точке – Великой Сингулярности. И когда невообразимая плотность энергии флуктуаций в Сингулярности достигла Абсолюта, она выразила себя на мгновение в сверкнувшей во мраке капле протовещества – первожидкости, состоящей из зародышей нового мира – кварков и глюонов. И содрогнулась темная масса, жадно впитав в себя эту каплю, она мгновенно превратилась ослепительно яркую субстанцию, через которую Сингулярность выразила себя, излучая все, что составляло Суть ее. И не было больше мрака – только звучащий Свет, рождающий в себе новый Мир, Пространство и Время. И было это 15 миллиардов лет назад, из капли протовещества возникла Вселенная с мириадами Галактик, Звезд, Планет. И каждое творение Вселенной заключало в себе частицу Великой Сингулярности, которая выразила себя через свое Творение, создав Разум и Живую Материю.

Теория биологической эволюции

Издавна люди пытались объяснить многообразие живого мира. На протяжении нескольких тысячелетий господствовало очень простое объяснение, которое состояло в том, что будто бы все виды организмов были созданы однажды Богом в их нынешних формах и больше никогда не изменялись. Сторонники религиозных представлений считают, что все многообразие организмов, населяющих Землю, явилось результатом божественного творения мира за шесть дней (так сказано в Библии), а любое другое предположение они, как правило, воспринимают в качестве оскорбления своей религиозной веры. Вспомним, что классическое естествознание и неживую природу рассматривало как нечто неизменное, раз и навсегда созданное Богом. Именно под влиянием идеи о неизменности всего живого биология - наука о жизни - долгое время сводилась лишь к описанию многочисленных видов животных и растений. И действительно, если известно, откуда взялась живая природа, а также то, что она неизменна, то остается только ее описать, разбить для удобства все живое на большие группы или классы, то есть - создать его классификацию. Наиболее совершенной для своего времени была классификация, созданная известным шведским ученым XVIII в. Карлом Линнеем .

Однако в том же XVIII столетии некоторые ученые в различных странах мира (например, Жорж Бюффон во Франции, Эразм Дарвин - дед Чарльза Дарвина - в Англии, Иоганн Гете в Германии, Михаил Ломоносов в России) пришли к выводу, что организмы, населяющие Землю, не неизменны, а находятся в состоянии непрерывного развития. Процесс изменения или развития называется в науке эволюцией (от лат. evolutio - развертывание). Такой вывод им позволили сделать обнаруженные в разных местах нашей планеты остатки животных и растений, существовавших на Земле миллионы лет назад. Эти остатки казались странными, так как они совершенно не были похожи на современные живые организмы. Из этого различия древних и нынешних форм жизни вполне можно было сделать вывод о том, что живая природа находится не в стационарном состоянии, а в эволюционном. Правда, также высказывались предположения о том, что найденные остатки - это не следы давно вымерших организмов, а некие предметы, которые Бог поместил в горные породы, чтобы людям было интереснее жить на свете. Однако такого рода объяснения мало что могли дать науке, и поэтому биология сосредоточилась на эволюционных идеях.

Одним из первых попытался выяснить как происходит эволюция известный французский биолог XVIII в. Жан Ламарк . Именно он предложил впервые термин «биология». Ламарк объяснил изменение видов живых организмов тем, что на них в значительной степени влияет окружающая среда (питание, климат и т.д.), под воздействием которой происходит формирование новых признаков, а также тем, что они передаются по наследству от одного поколения к другому, постепенно приводя, таким образом, к образованию новых видов живых организмов. Создателем стройной и развернутой теории эволюции является знаменитый английский ученый Чарльз Дарвин , который обобщил в середине XIX в. отдельные эволюционные идеи в единое учение. В 1859 г. увидела свет его знаменитая книга «Происхождение видов путем естественного отбора». С тех пор дарвиновская теория остается самым плодотворным результатом биологической мысли за все время ее существования. Правда, время от времени появляются люди, объявляющие, что Дарвин был неправ. Однако ничего достойного взамен его идей они предложить не могут. До сих пор не появилось другой, сколько-нибудь значимой теории, которая дала бы объяснение столь обширному количеству фактов, наблюдаемых в живой природе, как это сделала эволюционная теория Дарвина. Более того, сегодня она находит все новые области применения.

Развитие любых видов живых организмов, говорит Дарвин, совершается следующим образом. Поскольку постоянно меняются условия среды их обитания (ландшафт, климат и другие), то неудивительно, что происходят различные изменения и с живыми организмами, которые приспосабливаются к новым условиям для того, чтобы выжить. То есть исчезают одни признаки, выгодные для старых условий, и появляются иные, более отвечающие новым условиям жизни. Эти признаки передаются по наследству последующим поколениям, закрепляются в них, обеспечивая выживание вида, и сохраняются до тех пор, пока изменившиеся условия среды обитания не сделают их невыгодными или гибельными для жизни. Приведем простой пример. Допустим, в некоем месте живут гусеницы серого цвета, питающиеся древесной листвой. Теперь предположим, что в это место откуда-то прилетели и обосновались в нем птицы, которые начали питаться гусеницами. Появление таких нежелательных соседей является, конечно же, значительным изменением условий обитания гусениц. Будучи серыми, они прекрасно видны на зеленых листьях деревьев и становятся легкой добычей птиц. Для выживания гусениц необходимо, чтобы их окраска поменялась с серой на зеленую и стала сливаться с листьями, делая их незаметными. Если среди серых гусениц есть особи не с серой окраской, а с зеленой (что вполне возможно, так как особи даже одного вида могут значительно отличаться друг от друга), то понятно, что их шансы на выживание значительно выше.

Так происходит формирование нового признака под влиянием изменившихся условий среды обитания: со временем серые сородичи зеленых гусениц погибают, а последние остаются жить и, размножаясь, передают своему потомству этот жизненно важный признак. Обратим внимание на то, что часть особей, не приспособившихся к новым условиям, погибает, а выживают, наоборот, наиболее приспособившиеся, выработавшие выгодные для жизни новые признаки, которые позволяют им не только выжить самим, но и размножиться, оставить после себя потомство. Иначе говоря, природа сама производит отбор наиболее сильных и приспособленных к жизни организмов и уничтожает слабые и неприспособленные.

Такой отбор в эволюционной теории называется естественным . Он и является, по мнению Дарвина, главной движущей силой эволюции, ее всеобщим законом, которому подчиняется развитие всей живой природы. Изменчивость, наследственность и естественный отбор действовали с незапамятных времен появления живого и привели к поражающему ныне многообразию видов живых организмов.

Среди дарвиновских идей есть также утверждение о том, что человек, как один из биологических видов (называемый homo sapiens), является результатом длительной эволюции живой природы от менее совершенных к более совершенным организмам. В 1871 г. появилась его книга «Происхождение человека и половой отбор», в которой была высказана эта гипотеза. Довольно часто можно услышать, что с точки зрения Дарвина человек произошел от обезьяны. Это высказывание является неверным, потому что оно значительно огрубляет и искажает дарвиновскую мысль. Кстати, когда нам говорят, что человек произошел от обезьяны, то довольно часто возникает справедливый вопрос: отчего же нынешние обезьяны не превращаются в людей? Так вот, правильнее говорить, что и человек, и нынешние обезьяны произошли от общих млекопитающих предков, которые жили много миллионов лет назад. Проиллюстрировать это утверждение можно так называемым «принципом пяти пальцев». Посмотрите на свою ладонь: четыре пальца направлены в одну сторону, а один - большой - в другую, он как бы противопоставлен всем остальным.

Примерно то же самое наблюдается и в схеме эволюции человека: от общего млекопитающего предка в одну сторону пошло несколько ветвей эволюции, которые привели к появлению обезьян, а в другую сторону направилась эволюционная ветвь, увенчавшаяся появлением особого биологического вида - человека разумного . Это разделение двух ветвей произошло приблизительно 10-15 миллионов лет назад, и поэтому вполне понятно, что обезьяна и человек - это совершенно разные виды, не столько сходные, сколько противопоставленные друг другу (еще раз посмотрите на пять пальцев ладони), равно как ясно и то, что человек не «произошел от обезьяны» (а также совсем неудивительно, почему нынешние обезьяны не превращаются в людей).

В заключение необходимо отметить, что, несмотря на огромные успехи биологии, до сих пор многие вопросы и проблемы, связанные и с происхождением жизни на Земле, и с эволюцией человека еще далеки от окончательного решения и ждут своих будущих исследователей. Однако огромная и несомненная заслуга дарвиновской теории, помимо всего прочего, заключается в том, что она пробила первую брешь в господствовавшей несколько столетий идее о стационарности неживого и живого мира. Эволюционное учение, появившееся в XIX в., т.е. еще тогда, когда были сильны позиции классического механистического естествознания, утверждавшего неизменность всего существующего, как бы выпадало из него. Через полвека после создания эволюционного учения вторая или классическая научная картина мира начала рушиться, уступая место третьей или неклассической научной картине мире, одной из главных идей которой стало утверждение о том, что не только живая природа, но и Вселенная в целом есть результат грандиозной мировой эволюции.

Гипотезы происхождения жизни

Проблема происхождения жизни является одной из наиболее важных и сложных в современном естествознании. Мы уже говорили о том, что живая природа является настолько более высоким качественным уровнем организации материи по сравнению с неживой природой, что появление жизни во Вселенной представляет собой настоящую загадку или даже тайну.

Поскольку мы имеем дело только с жизнью на Земле, и нам ничего не известно о каких-либо других, внеземных формах живой природы, то когда говорят о происхождении жизни во Вселенной, подразумевают, конечно же, ее происхождение на Земле, или, иначе говоря, вопрос о происхождении жизни рассматривается относительно земных форм живой материи.

Существует несколько гипотез происхождения жизни .

Одну из них трудно назвать гипотезой, поскольку она представляет собой религиозную точку зрения на происхождение живого, т.е. для религии является не гипотезой (вероятностным предположением), а несомненным, достоверным, истинным знанием (конечно же, богооткровенным и иррациональным). Однако для науки религиозная точка зрения на происхождение жизни представляет собой именно гипотезу (причем ненаучную). Религиозная версия происхождения живой природы, равно как и неживой, обычно называется креационизмом (от лат. creatio - созидание). Согласно этой идее жизнь есть результат божественного творения мира за шесть дней. Как уже говорилось, креационизм не имеет прямого отношения к науке, но, будучи одной из точек зрения на происхождение жизни, не может быть оставлен без внимания при обсуждении данной проблемы.

Другая гипотеза происхождения живого, которая характерна, прежде всего, для древней науки, чаще всего называется абиогенезом (от греч. a - не, bios - жизнь, genos, genesis - происхождение). По этой гипотезе живое спонтанно и самопроизвольно может возникать из неживого в течение незначительного времени. Издавна люди видели, как на гниющем мясе или пищевых отходах через какое-то время появляются маленькие белые червячки, а на мусорных свалках - мыши и крысы. Такого рода наблюдения вполне могли навести на мысль о том, что объекты неживой природы могут порождать различные формы жизни.

Гипотезы абиогенеза придерживался Аристотель , который полагал, что определенные «частицы» вещества содержат некое «активное начало», которое при подходящих условиях может создать живой организм. Так он считал, что это активное начало содержится в оплодотворенном яйце, а также присутствует в солнечном свете, тине и гниющем мясе. «Таковы факты, - писал Аристотель, - живое может возникать не только путем спаривания животных, но и разложением почвы. Так же обстоит дело и у растений: некоторые развиваются из семян, а другие как бы самозарождаются под действием всей природы, возникая из разлагающейся земли или определенных частей растений» Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 343.. По Аристотелю какой-либо существенной границы между живой и неживой природой не существует: «...природа совершает переход от безжизненных объектов к животным с такой плавной последовательностью, поместив между ними существа, которые живут, не будучи при этом животными, что между соседними группами, благодаря их тесной близости, едва можно заметить различия» Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 343..

Гипотеза абиогенеза, появившаяся еще в эпоху Древнего мира, не утратила своего значения и в более поздний период - Возрождения и Нового времени. Так голландский естествоиспытатель Ян Гельмонт , живший на рубеже XVI-XVII вв., описал эксперимент, в котором он за три недели якобы создал мышей. Для этого были нужны, по его утверждению, грязная рубашка, темный шкаф и горсть пшеницы. Активным началом в процессе зарождения мыши Гельмонт считал человеческий пот.

Однако в естествознании Нового времени гипотеза абиогенеза подверглась серьезной критике. В конце XVII в. итальянский биолог и врач Франческо Реди , усомнившись в возможности самопроизвольного возникновения жизни из неживого вещества, поставив ряд экспериментов, установил, что маленькие белые червячки, появляющиеся на гниющем мясе, - это личинки мух. «Убежденность была бы тщетной, - писал Реди, - если бы ее нельзя было подтвердить экспериментом. Поэтому в середине июля я взял четыре больших сосуда с широким горлом, поместил в один из них змею, в другой - немного рыбы, в третий - угрей... в четвертый - кусок молочной телятины, плотно закрыл их и запечатал. Затем я поместил то же самое в четыре других сосуда, оставив их открытыми... Вскоре мясо и рыба в незапечатанных сосудах зачервили; можно было видеть, как мухи свободно залетают в сосуды и вылетают из них. Но в запечатанных сосудах я не видел ни одного червяка, хотя прошло много дней после того, как в них была положена дохлая рыба»Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 344..

Эксперименты Франческо Реди позволили ему сделать вывод о том, что жизнь не может самопроизвольно зародиться из неживого, а возникает только из предшествующей жизни. Эта идея, противостоящая концепции абиогенеза, получила название биогенеза (от греч. bios - жизнь, genos, genesis - происхождение). В 1765 г. итальянский ученый Ладзаро Спалланцани поставил опыты, подтверждающие справедливость идеи биогенеза. Он подвергнул мясные и овощные отходы кипячению в течение нескольких часов, после чего сразу же герметично запечатал их и снял с огня. Когда Спалланцани исследовал жидкости через несколько дней, то не обнаружил в них никаких признаков жизни. Из этого он сделал вывод, что высокая температура уничтожила все формы живых существ, без которых ничто живое уже не могло возникнуть. Эксперименты известного французского ученого XIX в. Луи Пастера , в основе которых лежали методы Ладзаро Спалланцани, показали, что бактерии вездесущи, и неживые объекты, если их не стерилизовать должным образом, легко могут быть заражены живыми существами. Опыты Пастера окончательно подтвердили концепцию биогенеза и опровергли гипотезу абиогенеза. Однако идею биогенеза нельзя назвать одной из гипотез происхождения жизни, потому что она всего лишь отрицает возможность спонтанного самозарождения живых организмов из неживого вещества, но ничего не говорит о том, каким образом или откуда появляется живое.

Наиболее распространенной и признаваемой в научной среде является гипотеза биохимической эволюции , один из представителей которой, известный отечественный ученый А.И. Опарин , выдвинул идею о том, что жизнь на Земле представляет собой естественный результат длительного прогрессивного, или восходящего развития материи от низших и простых форм к более высоким и сложным. Вспомним, одной их характерных особенностей современного естествознания является синергетика - теория самоорганизации различных материальных систем. В свете синергетики материя способна не только к самоупрощению, деградации и распаду, но и к самоусложнению, или саморазвитию. Следуя синергетическому видению природы, вполне возможно предположить, что в результате длительной эволюции (протяженностью в сотни миллионов лет) из неорганических веществ путем постепенного самоусложнения возникли более сложные - органические (углеродосодержащие) соединения, которые, в свою очередь, путем дальнейшего длительного самоусложнения привели к появлению первых простейших форм жизни, эволюционировавших далее к более развитым и сложным ее формам. Таким образом, согласно гипотезе биохимической эволюции, жизнь на Земле возникла из неживого вещества. Возникает вопрос: чем отличается это предположение от рассмотренной выше гипотезы абиогенеза, которая также утверждает, что живое естественным образом происходит от неживого? Вспомним, в гипотезе абиогенеза речь идет о том, что жизнь самопроизвольно возникает из неживых объектов: во-первых, многократно, а, во-вторых, в течение незначительного периода времени (например, за несколько дней). По гипотезе биохимической эволюции живое также появляется из неживого, но, во-первых, единожды, или однократно, а, во-вторых, это происходит медленно и постепенно, на протяжении сотен миллионов лет.

Несмотря на широкое распространение гипотезы биохимической эволюции в научной среде, она разделяется далеко не всеми учеными. В качестве основного аргумента ее противники подчеркивают неизмеримо более высокий и качественно новый уровень организации живой природы по сравнению с неживой, в силу которого первая не сводима ко второй, и не выводится из нее. Также они справедливо указывают на то, что гипотеза биохимической эволюции, по большому счету, не объясняет, как произошел качественный скачок от неживого к живому. Так один из основоположников современной молекулярной биологии, английский ученый Фрэнсис Крик на Бюраканском симпозиуме в сентябре 1971 г. сказал: «Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни - чудо, но это свидетельствует только о нашем незнании» Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 353.. Здесь необходимо уточнить, что «первичным бульоном», в котором могла возникнуть жизнь, согласно гипотезе биохимической эволюции, обозначается совокупность органических веществ, накопившихся в древних океанах Земли.

Еще одной гипотезой происхождения жизни является концепция панспермии (от греч. pan - весь, все и sperma - семя), по которой жизнь на Земле является частным случаем жизни во Вселенной. Представители гипотезы панспермии утверждают, что жизнь во Вселенной существует чуть ли не вечно: мельчайшие «семена» живого (споры, вирусы, бактерии) переносятся в ее бескрайних просторах на частицах космической пыли и, попадая на планеты с благоприятными для жизни условиями, «прорастают», давая начало дальнейшему развитию различных форм живых организмов.

Современные исследования в космосе позволяют утверждать, что вероятность обнаружения жизни в пределах Солнечной системы ничтожно мала, однако они не дают никаких сведений о возможности существования каких-либо живых организмов за ее пределами. При изучении материала метеоритов и комет в них были обнаружены многие «предшественники живого» - такие вещества, как цианогены, синильная кислота и органические соединения, которые, возможно, сыграли роль «семян», падавших на Землю. Кометы содержат воду и органическое вещество, являющееся превосходной питательной средой для некоторых видов микроорганизмов. Исследования комет показали, что в них неопределенно долго могут сохраняться почти все формы микроорганизмов, известных в настоящее время на Земле.

В пользу гипотезы панспермии косвенно свидетельствует способность некоторых живых организмов к анабиозу (от греч. anabiosis - оживление), т.е. временному прекращению всех видимых проявлений жизни при воздействии неблагоприятных условий окружающей среды. Живой организм в состоянии анабиоза подобен неживому объекту, однако при появлении благоприятных условий он вновь «становится» живым. Например, прекращение жизненных процессов при высушивании семян или глубоком замораживании мелких организмов не ведет к потере жизнеспособности. Если структура сохраняется неповрежденной, то она при возвращении к нормальным условиям обеспечивает восстановление жизненных процессов. Таким образом, вполне возможно, что рассеянные во Вселенной «семена» жизни, впадая в анабиоз, могут существовать сколь угодно длительное время, не подвергаясь при этом неблагоприятным, или губительным космическим условиям в виде высокой или низкой температуры, отсутствия влаги, радиоактивного излучения и т.п.

Нечто подобное тому, о чем говорит гипотеза панспермии, происходит в уменьшенном масштабе в окружающей нас живой природе Земли: семена растений беспорядочно и произвольно распространяются в земном пространстве и, попадая в благоприятные условия, дают новые всходы. Однако, как мы уже знаем, жизнь растений может иметь и другую основу, которая заключается не в хаотичном и естественном самораспространении, а в организованной, сознательной и целенаправленной деятельности человека по выращиванию нужных ему культур. Семена растений не произвольно прорастают где и как попало, а с определенными целями высаживаются людьми. Почему бы не предположить, что нечто подобное имеет место и в масштабах Вселенной?

Разновидностью концепции панспермии является гипотеза направленной панспермии , по которой «семена» жизни были некогда целенаправленно доставлены на Землю представителями неизвестных нам высокоразвитых цивилизаций. По крайней мере, невозможно однозначно утверждать, что жизнь во Вселенной существует только на Земле, и нигде больше. Не исключено, что она может многократно возникать в разное время и в различных частях галактики или Вселенной. Также не исключено, что где-то жизнь появилась намного раньше, чем на Земле, имеет совершенно иную качественную основу и по уровню своего развития давно превзошла все формы земной жизни, включая человека разумного и всю созданную им вторую (искусственную) природу со всеми ее колоссальными техническими приспособлениями, достижениями и успехами. Возможно, что представители этой высокоразвитой и неведомой нам жизни не только каким-то образом влияют на различные земные формы живой природы, но и вообще планомерно руководят ими от момента их зарождения до современного состояния.

Насколько бы невероятной и фантастической, на первый взгляд, не казалась эта гипотеза, ее придерживаются некоторые известные современные ученые. Например, уже упоминавшийся нами английский ученый Фрэнсис Крик, расшифровавший код ДНК и получивший за эту работу Нобелевскую премию, полагает, что «... Мыслящее Существо (homo sapiens) служит только орудием, упаковкой, неким космобусом для распространяющегося Истинного Разума, скрывающегося в разумной и победоносной крупинке рибонуклеиновой кислоты. Это ДНК творит цивилизацию! Наше тело и разум вместе с их физическими и духовными «усилителями» - это только орудия того (занесенного, очевидно, несколько миллионов лет назад на нашу Землю) зародыша, который имеет задачу овладеть нашей Галактикой или нашей частью Вселенной. А в дальнейшем будущем - встреча с Теми, которые его занесли на нашу Землю...» Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 352-353.. Доводом в пользу этой гипотезы служит наличие в белке молибдена в количестве непропорционально большем, чем имеется его на Земле, что может свидетельствовать о космическом генезисе ДНК и жизни на нашей планете. При таком взгляде человек является как бы искусственным знаком, запрограммированным космическим сообщением, подтверждающим возможность жизни в космосе.

Обратим внимание на высказывание известного отечественного ученого И.С. Шкловского , который признает небезосновательность гипотезы направленной панспермии: «...нельзя исключить возможность того, что жизнь на некоторых планетах может иметь искусственное происхождение. Небезынтересно в порядке гипотезы обсудить возможность занесения живых спор и микроорганизмов во время посещения безжизненной планеты недостаточно стерилизованным инопланетным космическим кораблем. Можно также высказать гипотезу гораздо более радикального свойства: жизнь на некоторых планетах могла возникнуть как результат сознательного эксперимента высокоорганизованных космонавтов, некогда посетивших эти планеты, которые в те времена были безжизненны. Можно даже предположить, что подобное «насаждение жизни», так сказать, «в плановом порядке» является нормальной практикой высокоразвитых цивилизаций, разбросанных в просторах Вселенной. Вместо того, чтобы пассивно ожидать «естественного», самопроизвольного возникновения жизни на подходящей планете - процесса, возможно, весьма маловероятного, высокоразвитые галактические цивилизации как бы планомерно сеют посевы жизни во Вселенной... Если это так, то вероятность обитаемости планетных систем в Галактике может быть увеличена на много порядков. Наконец, чтобы быть последовательным, нужно еще учитывать возможность заселения планет, на которых существуют подходящие условия, разумными существами - искусственными или естественными» Цит. по: Концепции современного естествознания. 2-е изд. Ростов-на-Дону: Феникс, 1999. С. 353-354..

Таковы основные гипотезы происхождения жизни. Как видим, данная проблема является достаточно сложной и пока еще весьма далека от своего окончательного и общепризнанного научного решения, которое остается делом будущего. Дальнейшее развитие естествознания, несомненно, прольет больший свет на вопрос о происхождении жизни на Земле и, возможно, во Вселенной.

Различия живой и неживой природы

Принципу наименьшего действия подчиняются все системы неорганического мира. В биологическом и растительном мире это принцип не имеет такого широкого распространения. Любое животное или растение стремятся создать такую морфологическую оболочку, которая бы была благоприятна для размножения и годна для сопротивления условиям среды.

В этом случае вступает в действие принцип экономии материи, который не действует в неорганическом мире. Ярким примером этому служит стремление живых организмов к экономии костной субстанции при распределении материи, дающее максимум прочности во всех нужных направлениях. 26231

Кроме этого, живые организмы проявляют лишь одним им свойственный феномен - феномен роста. Неорганические кристаллы увеличиваются путем присоединения идентичных элементов; живой организм растет путем "всасывания", идущего изнутри и направляющегося наружу. Мы имеем также еще одно коренное различие: молекулярные элементы неорганической материи, не меняются во все время существования данной совокупности, тогда как элементы, образующие живую ткань, в процессе роста сгорают, удаляются и возобновляются, сохраняя общее начертание формы организма. Например, раковина (внешний скелет морских организмов) растет, сохраняя свою первоначальную форму, несмотря на свой асимметричный рост; рога животных растут только с одного конца. Долгое время считалось, что объекты неживой природы (например, кристаллы) отличаются от живых объектов (например, растений, цветов) видом используемой симметрии. Отвечая на вопрос: "Где граница между живой и мертвой природой?" многие известные специалисты в области симметрии и кристаллографии обращают внимание на то, что это различие состоит в использовании в живых организмах так называемой "пятерной" или "пентагональной" симметрией, связанной с золотым сечением. Известный русский ученый А.В. Шубников по этому поводу пишет так: "Что касается организмов, то мы для них не имеем такой теории, которая могла бы ответить на вопрос, какие виды симметрии совместимы и какие несовместимы с существованием живого вещества. Но мы не можем не отметить здесь тот в высшей степени замечательный факт, что среди представителей живой природы, пожалуй, чаще всего встречаются как раз простейшие из невозможных для затвердевшего, окристаллизованного "мертвого" вещества симметрии (пятерная симметрия)". Характерной чертой строения растений и их развития является спиральность. Еще Гете, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни.

Заключение

Так чем же, все таки, отличается живая природа отнеживой? Для творений неживой природы характерна высокая устойчивость, слабая изменчивость, если судить в масштабах человеческой жизни. Человек рождается, живет, стареет, умирает, а гранитные горы остаются такими же и планеты вращаются вокруг Солнца на протяжении многих лет. Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций. Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир живой природы - это, прежде всего мир гармонии.

Список используемой литературы

1. «История биологии с древнейших времён до начала двадцатого века» Бляхер Л.Я., Быховский Б.Е., Микулинский С.Р. и др. Изд. Наука. Москва-1972

2. «О сущности живой материи» Веселовский В.Н. Изд. Мысль

3. Концепция естествознания. Гусев Д.А. Учебный курс

4. «Становление свободы: от природного к социокультурному бытию» Шамотин Б.С.

5.http://enigma-project.ruРубрика: космос Статья: Теория большого взрыва

Грандиозное многообразие окружающего нас мира распадается на две большие области: неживую и живую природу. Природа -- материальный мир Вселенной, в сущности -- основной Объект изучения науки. В быту слово «природа» часто употребляется в значении естественная среда обитания. Основные естественные науки, посвященные изучению неживой природы, -- это астрономия, физика и химия. Исследованием живой природы занимается биология (от греч. bios -- жизнь и logos -- учение, наука). Живая природа

Живая природа -- совокупность организмов. Делится на пять царств: бактерии, грибы, растения и животные. Живая природа организуется в экосистемы, которые составляют биосферу. Основной атрибут живой материи -- генетическая информация, проявляющаяся в репликации и мутации. Развитие живой природы привело к появлению человечества.

Интерес к познанию живой природы возник у человека очень давно, еще в первобытную эпоху, и был тесно связан с его важнейшими потребностями: в пище, лекарствах, одежде, жилье и т.п. Однако только в первых древних цивилизациях люди стали целенаправленно и систематически изучать живые организмы, составлять перечни животных и растений, населяющих разные регионы земли. Наука, занимающаяся изучением живой природы, получила название биология. В настоящее время биология представляет собой целый комплекс наук о живой природе. Причем существуют различные классификации последних. Например, по объектам исследования биологические науки подразделяются на вирусологию, бактериологию, ботанику, зоологию и антропологию. Неживая природа, или косная материя, представлена в виде вещества и поля, которые обладают энергией. Она организована в несколько уровней: элементарные частицы, атомы, химические элементы, небесные тела, звёзды, галактика и Вселенная. Вещество может пребывать в одном из нескольких агрегатных состояний (например, газ, жидкость, твёрдое тело, плазма). Развитие Неживой природы привело к появлению Живой природы.

Неживая природа существует на различных уровнях сложности. Первым из них, по современным представлениям, являются кварки, из которых состоят элементарные частицы. Далее следует уровень атомов, слагаемых из элементарных частиц, затем идут уровни: молекул, макроскопических тел, мегаобъектов, галактик, скоплений галактик, метагалактики и Вселенной. Важно отметить, что каждый последующий уровень не сводится механически к предыдущему. Например, атом не является простой механической суммой образующих его элементарных частиц, а представляет собой нечто более сложное и качественно новое по сравнению с этой суммой, и поэтому никак не сводим к ней. Вспомним, одна из характерных черт третьей, или современной научной картины мира -- это антимеханициз, в силу которого не только Вселенную в целом, но и каждый отдельный ее объект нельзя рассматривать как механическую совокупность составляющих частей. Различия живой и неживой природы

Принципу наименьшего действия подчиняются все системы неорганического мира. В биологическом и растительном мире это принцип не имеет такого широкого распространения. Любое животное или растение стремятся создать такую морфологическую оболочку, которая бы была благоприятна для размножения и годна для сопротивления условиям среды.

В этом случае вступает в действие принцип экономии материи, который не действует в неорганическом мире. Ярким примером этому служит стремление живых организмов к экономии костной субстанции при распределении материи, дающее максимум прочности во всех нужных направлениях. 26231

Кроме этого, живые организмы проявляют лишь одним им свойственный феномен - феномен роста. Неорганические кристаллы увеличиваются путем присоединения идентичных элементов; живой организм растет путем "всасывания", идущего изнутри и направляющегося наружу. Мы имеем также еще одно коренное различие: молекулярные элементы неорганической материи, не меняются во все время существования данной совокупности, тогда как элементы, образующие живую ткань, в процессе роста сгорают, удаляются и возобновляются, сохраняя общее начертание формы организма. Например, раковина (внешний скелет морских организмов) растет, сохраняя свою первоначальную форму, несмотря на свой асимметричный рост; рога животных растут только с одного конца. Долгое время считалось, что объекты неживой природы (например, кристаллы) отличаются от живых объектов (например, растений, цветов) видом используемой симметрии.

Отвечая на вопрос: "Где граница между живой и мертвой природой?" многие известные специалисты в области симметрии и кристаллографии обращают внимание на то, что это различие состоит в использовании в живых организмах так называемой "пятерной" или "пентагональной" симметрией, связанной с золотым сечением. Известный русский ученый А.В. Шубников по этому поводу пишет так: "Что касается организмов, то мы для них не имеем такой теории, которая могла бы ответить на вопрос, какие виды симметрии совместимы и какие несовместимы с существованием живого вещества.

Но мы не можем не отметить здесь тот в высшей степени замечательный факт, что среди представителей живой природы, пожалуй, чаще всего встречаются как раз простейшие из невозможных для затвердевшего, окристаллизованного "мертвого" вещества симметрии (пятерная симметрия)". Характерной чертой строения растений и их развития является спиральность. Еще Гете, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Так чем же, все таки, отличается живая природа от неживой? Для творений неживой природы характерна высокая устойчивость, слабая изменчивость, если судить в масштабах человеческой жизни. Человек рождается, живет, стареет, умирает, а гранитные горы остаются такими же и планеты вращаются вокруг Солнца на протяжении многих лет. Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций. Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир живой природы - это, прежде всего мир гармонии.

Природой называется все то, что окружает нас и не создано при участии человека. Так, окружающие нас леса, горы, моря, звезды — это природа. А дома, книги, машины, космические корабли к природе не относятся.

В природе выделяют живые и неживые объекты. К живым принято относить все, что способно самостоятельно жить, развиваться, расти, питаться, размножаться. Это растения, животные, и, конечно, сам человек.

Признаки объектов живой природы

К главным признакам объектов живой природы относят способности организма совершать следующий жизненный цикл:

  • Рождение, рост и развитие. Так, из семечка вырастает целое дерево, младенец становится взрослым человеком.
  • Размножение. Объекты живой природы способны производить себе подобных.
  • Питание. Все живые существа нуждаются в пище: растения просят воды, животные питаются травой, растениями или другими животными.
  • Дыхание. Все живые организмы имеют органы дыхания: у человека и многих животных — это легкие, у рыб — жабры, у растений — клетки, поглощающие углекислый газ.
  • Движение. В отличие от большинства объектов неживой природы, живые организмы движутся: животные и человек передвигаются на ногах, лапах, растения поворачиваются вслед за солнцем, распускают цветы.
  • Умирание — это конечный цикл жизни организма. После того, как объект живой природы перестает поглощать пищу, дышать и двигаться, он умирает и переходит в разряд объектов неживой природы. Так, дерево — это объект живой природы, а вот срубленный ствол уже относится к неживой природе.

Все эти способности присущи только живым организмам. То есть, те объекты, которые растут, размножаются, питаются, дышат и относят к объектам живой природы.

В отличие от объектов живой природы, неживые неспособны к таким действиям. Например, луч Солнца, Луна, комета, песок, камень, скала, вода, снег — это объекты неживой природы. Несмотря на то, что многие из них способны двигаться (например, вода в реке), другие — растут (например, горы), эти объекты не размножаются, не питаются, у них нет органов дыхания.

Зато растения, которые, не движутся, способны к питанию и дыханию, а потому относятся к живой природе.

Объекты живой природы: примеры

В биологии выделяют следующие виды объектов живой природы:

Микроорганизмы — это древнейшие формы жизни на нашей планете. Первые микроорганизмы появились миллиарды лет тому назад. Микроорганизмы живут там. Где есть вода. Главная особенность их — невероятная жизнестойкость, так как микроорганизмы выживают практически при любых условиях. К объектам живой природы их относят потому, что они потребляют пищу (воду и питательные вещества) могут размножаться и расти. А с течением времени умирают.

К микроорганизмам относятся различные виды бактерий, вирусы, грибы.

Растения. Мир флоры на земле необычайно велик и многогранен. Начиная от одноклеточных водорослей вроде инфузории-туфельки или амебы и заканчивая гигантскими кедрами или баобабами, все растения относятся к объектам живой природы. Во-первых, они способны расти и размножаться. Во-вторых, все растения нуждаются в питании, часть которых получают из воды, часть — из почвы. В-третьих, растения двигаются: разворачивают и сворачивают листочки, сбрасывают листья и цветы, распускают бутоны, поворачиваются вслед за солнцем. В-четвертых, растения дышат, поглощая углекислый газ и выделяя кислород.

Однако стоит помнить, что после умирания растения переходят в класс объектов неживой природы.

Животные — еще одна разновидность объектов живой природы, наиболее многочисленная, так как сюда относятся самые разнообразные виды: млекопитающие, птицы, рыбы, земноводные, насекомые. Представители фауны также способны к размножению, они дышат и питаются, двигаются и растут, приспосабливаясь у условиям окружающей среды.

Человек — высшая ступень развития живого организма. Именно человеку присущи все способности объекта живой природы: человек рождается, растет, производит себе подобных, питается, дышит и, в конце концов, умирает.

Взаимодействие живой и неживой природы

Все объекты живой и неживой природы находятся в тесной взаимосвязи и оказывают влияние друг на друга. Так, Солнце — это объект неживой природы. Но без его тепла и энергии невозможно существование жизни. То же можно сказать и о воде, которая послужила источником зарождения жизни на нашей планете.

Все живые организмы дышат. А потому для выживания им необходим воздух, который является объектом неживой природы.

С помощью звезд и Солнца птицы ориентируются в полете, человек с их помощью определяет циклы для выращивания растений

В свою очередь, и живая природа оказывает влияние на объекты неживой природы. Так, человек, строя города, осушает болота и разрушает горы, растения, выделяя кислород, меняют структуру воздуха, некоторые виды животных роют норы, выбирая для своего жилища объект неживой природы — почву.

При этом нужно помнить, что неживая природа является первичной, основной. Все необходимое мы черпаем именно из неживой природы, оттуда мы получаем воду, воздух, тепло и энергию, без которых невозможна жизнь.

1.Введение.

Представленная работа посвящена теме "Структура и иерархия объектов неживой и живой природы".
Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение поднятых вопросов.
Эта тема изучается на стыке сразу нескольких взаимосвязанных дисциплин. Для современного состояния науки характерен переход к глобальному рассмотрению проблем тематики.
Вопросам исследования посвящено множество работ. В основном материал, изложенный в учебной литературе, носит общий характер, а в многочисленных монографиях по данной тематике рассмотрены более узкие вопросы проблемы. Однако, требуется учет современных условий при исследовании проблематики обозначенной темы.
Высокая значимость и недостаточная практическая разработанность проблемы "Структура и иерархия объектов неживой и живой природы" определяют несомненную новизну данного исследования.
Дальнейшее внимание к вопросу о проблеме необходимо в целях более глубокого и обоснованного разрешения частных актуальных проблем тематики данного исследования.
Актуальность настоящей работы обусловлена, с одной стороны, большим интересом к выбранной теме в современной науке, с другой стороны, ее недостаточной разработанностью. Рассмотрение вопросов связанных с данной тематикой носит как теоретическую, так и практическую значимость.
Результаты могут быть использованы для разработки методики анализа "Структура и иерархия объектов неживой и живой природы".
Теоретическое значение изучения проблемы "Структура и иерархия объектов неживой и живой природы" заключается в том, что избранная для рассмотрения проблематика находится на стыке сразу нескольких научных дисциплин.
Объектом данного исследования является анализ условий "Структура и иерархия объектов неживой и живой природы".
При этом предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач данного исследования.
Целью исследования является изучение темы с точки зрения новейших отечественных и зарубежных исследований по сходной проблематике.

По результатам исследования был вскрыт ряд проблем, имеющих отношение к рассматриваемой теме, и сделаны выводы о необходимости дальнейшего изучения/улучшения состояния вопроса.
Теоретической и методологической основой проведения исследования явились законодательные акты, нормативные документы по теме работы.
Источниками информации для написания работы послужили базовая учебная литература, фундаментальные теоретические труды крупнейших мыслителей в рассматриваемой области, результаты практических исследований видных отечественных и зарубежных авторов, статьи и обзоры в специализированных и периодических изданиях, посвященных тематике "Структура и иерархия объектов неживой и живой природы", справочная литература, прочие актуальные источники информации.

2.Живая природа

Живая природа - совокупность организмов. Делится на пять царств: бактерии, грибы, растения и животные. Живая природа организуется в экосистемы, которые составляют биосферу. Основной атрибут живой материи - генетическая информация, проявляющаяся в репликации и мутации. Развитие живой природы привело к появлению человечества.

Интерес к познанию живой природы возник у человека очень давно, еще в первобытную эпоху, и был тесно связан с его важнейшими потребностями: в пище, лекарствах, одежде, жилье и т.п. Однако только в первых древних цивилизациях люди стали целенаправленно и систематически изучать живые организмы, составлять перечни животных и растений, населяющих разные регионы земли. Наука, занимающаяся изучением живой природы, получила название биология. В настоящее время биология представляет собой целый комплекс наук о живой природе. Причем существуют различные классификации последних. Например, по объектам исследования биологические науки подразделяются на вирусологию, бактериологию, ботанику, зоологию и антропологию.

По уровню организации живых объектов выделяются следующие науки:

· анатомия, посвященная изучению макроскопического строения животных;

· гистология, исследующая строение тканей;

· цитология, изучающая клетки, из которых состоят все живые организмы.

По свойствам, или проявлениям живого, биология включает в свой состав:

· морфологию - науку о структуре, или строении живых организмов;

· физиологию, которая изучает их функционирование;

· молекулярную биологию, исследующую микроструктуру живых тканей и клеток;

· экологию, рассматривающую образ жизни растений и животных и их взаимосвязи с окружающей средой;

· генетику, которая изучает законы наследственности и изменчивости живых организмов.

Все эти классификации в известной степени условны и относительны и пересекаются друг с другом в различных пунктах. Такая многоплановость комплекса биологических наук во многом обусловлена необычайным многообразием живого мира.

К настоящему времени учеными обнаружено и описано более одного миллиона видов животных, около полумиллиона видов растений, несколько сотен тысяч видов грибов, более трёх тысяч видов бактерий. Причем мир живой природы исследован далеко не полностью. Число пока еще не описанных видов живого оценивается, по меньшей мере, в один миллион. Кроме того, огромное количество видов живых организмов давно вымерло. По современным научным данным за все время развития жизни на Земле существовало колоссальное количество различных видов живых существ - приблизительно пятьсот миллионов.

Понятно, что живая природа представляет собой качественно новый, более высокий уровень организации материи, или виток мировой эволюции, поднявшийся на необыкновенную высоту по сравнению со ступенью неживой природы. В чем же заключается столь радикальное отличие живой природы от неживой? Интуитивно все понимают, что такое живое и что - неживое. Однако при попытке определить сущность живого возникают трудности. Оказывается, ответить на вопрос о том, что такое жизнь, довольно непросто.

Например, широко известно определение, предложенное немецким философом XIX в. Фридрихом Энгельсом, согласно которому «жизнь - это способ существования белковых тел, важной особенностью которого является постоянный обмен веществ с окружающей их внешней природой». Тем не менее, живая мышь, например, и горящая свеча с физико-химической точки зрения находятся в одинаковом состоянии обмена веществ с внешней средой, равно потребляя кислород и выделяя углекислый газ, но в одном случае - в результате дыхания, а в другом - в процессе горения. Данный пример показывает, что обмениваться веществами с окружающей средой могут и неживые объекты; т.е. обмен веществ является хотя и необходимым, но недостаточным критерием определения жизни. То же самое можно сказать и о белковой природе живых объектов. Так американский ученый Ф. Типлер в своей книге «Физика бессмертия» говорит следующее: «Мы не хотим привязывать определение жизни к молекуле нуклеиновой кислоты, потому что можно вообразить себе существование жизни, которая к этому определению не подходит. Если к нам в космический корабль явится внеземное существо, химическую основу которого составляет не нуклеиновая кислота, то нам все равно захочется признать его живым» Цитата по: Концепции современного естествознания. М.: ЮНИТИ, 1997. С. 159.

Таким образом, невозможно указать только на один какой-нибудь главный, или основополагающий признак, по которому различаются объекты живой природы и неживой. Поэтому современная биология при определении и описании живого исходит из необходимости перечисления нескольких принципиальных свойств живых организмов. При этом подчеркивается, что только совокупность этих свойств может дать представление о специфике жизни. К таким свойствам, или признакам, относятся следующие:

· Живые организмы характеризуются гораздо более сложным устройством, чем неживые тела.

· Любой организм для поддержания своей жизнедеятельности получает энергию из окружающей среды. Большая часть организмов прямо или косвенно использует солнечную энергию.

· Живые организмы активно реагируют на окружающую среду. Если, например, вы толкнете камень, то он пассивно сдвинется с места, а если толкнуть животное, то оно отреагирует активно: убежит, нападет, изменит форму и т.д. Способность реагировать на внешние раздражения - это всеобщее свойство живых существ, как растений, так и животных.

· Живые организмы могут не только изменяться, они также и усложняются. Так, например, у растения появляются новые ветви, а у животного- новые органы, значительно отличающиеся и по внешнему виду, и по устройству от тех, которые их породили.

· Все живое размножается. Причем потомство и похоже на родителей, и в то же время чем-то от них отличается.

· Сходство потомства с родителями обусловлено еще одной важной особенностью живых организмов - способностью передавать потомкам заложенную в них наследственную информацию, которая содержится в генах (от греч. genos - происхождение) - мельчайших и очень сложно утроенных частицах, находящихся в ядрах клеток живых организмов. Генетический материал направляет развитие организма. Вот почему потомки похожи на родителей. Однако наследственная информация в процессе жизни организма, а также во время передачи несколько искажается или меняется. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

· Живые организмы хорошо приспособлены к среде своего обитания. Строение птицы, рыбы, лягушки, дождевого червя полностью соответствует тем условиям, в которых они живут. Этого никак нельзя сказать о неживых телах: камню, например, «все равно», где находиться - он может лежать на дне реки или валяться в поле, или летать вокруг Земли в качестве ее естественного спутника. Однако если мы заставим, например, птицу жить в речных глубинах, а рыбу - в лесу, то эти живые существа, конечно же, погибнут. Говоря проще, основные отличия живого от неживого заключаются в том, что все живые организмы питаются, дышат, растут и размножаются, а неживые тела не питаются, не дышат, не растут и не размножаются.

Исследуя живой организм, биохимик отвечает на ряд вопросов:

1. Из каких химических соединений состоит клетка, ткань, орган или организм в целом?

2. Как взаимосвязаны эти химические соединения, как они образуются и взаимопревращаются?

3. Каким образом регулируются взаимопревращения веществ?

4. Чем биохимически отличается изучаемая клетка, ткань, орган от других клеток, тканей, органов, чем определяется выполнение ими их специфических функций в организме?

5. Как связаны превращения веществ с превращениями энергии?

В живой природе также можно выделить основные структурные уровни, или ступени сложности. Первый из них - это молекулярный уровень, представляющий собой предельно малые объекты живого, а именно молекулы ДНК, в которых заключена наследственная информация живых организмов. Следующий уровень является клеточным, за ним следуют органно-тканевый и организменный уровни. Далее идут популяционно-видовой и биогеоценотический, или экосистемные уровни. Биогеоценоз (экосистема)- это участок Земли со всеми живыми организмами, которые его населяют, и неживой среды их обитания; говоря иначе, со всеми компонентами составляющей его живой и неживой природы. Примерами биогеоценозов, или экосистем могут служить лес, озеро, поле и т.п. Завершающей ступенью в иерархии уровней организации живого мира является биосфера, которая представляет собой всю совокупность живых организмов Земли вместе с окружающей их природной средой.

2.1.Иерархия уровней организации живого

Представления о неравновесности живого организма развил биолог фон Берталанфи, введя термин «открытые системы», ныне широко используемый в синергетике. Он рассматривал ста-

ционарные состояния в неравновесной живой системе, которые, определил как «текущее равновесие». На основе обобщения физических, в частности термодинамических, представлений он разработал свою теорию биологических организмов, рассматривая организм как целостную сложную иерархическую систему.

По существу в применении к биологии он предложил и использовал метод системного анализа, активно применяемый сейчас в науке и технике. В частности, им высказана идея, что системная организация - основа точной биологии. А как метко сказал Н. В. Тимофеев-Ресовский, системный анализ - «это когда сначала думают, а потом делают». Организм - пространственное целое, проявляющееся во взаимодействии частей и частных процессов. Процессы в живом организме обусловливаются целостной пространственной системой, подчиненной жесткой иерархии.

Концепция структурных уровней позволяет не только описать живые организмы по уровням их сложности и закономерностям функционирования, но и расположить в иерархическом порядке, при котором каждый предыдущий уровень входит в последующий, образуя единое целое живой системы. Тем самым представление уровней организации хорошо сочетается с целостностью организма. Критерием выделения основных уровней выступают специфичные дискретные структуры и фундаментальные биологические взаимодействия.

Различают следующие уровни организации биологических структур: самоорганизующиеся комплексы, биомакромолекулы, клетки, многоклеточные организмы Н. В. Тимофеев-Ресовский приводит другую классификацию уровней: клеточный, молекулярно-генетический, организменный, популяционно-видовой и биогеоценозный. Существует и такая градация: молекулярный, клеточный, тканевой, органный, онтогенетический, популяционный, видовой, биогеоценотический и биосферный На каждом уровне выделяют элементарную единицу и элементарные явления.

Элементарная единица - это структура, закономерное изменение которой приводит к элементарному явлению. Элементарной единицей на молекулярно-генетическом уровне является ген, на клеточном - клетка, на организменном - особь, на популяционном - совокупность особей одного вида - популяция. Совокупность элементарных единиц и явлений на соответствующем уровне отражает содержание эволюционного процесса.

Природа и культура (2)Реферат >> Культура и искусство

Выдвигал, вызвали недовольство церковной иерархии , и ему, несмотря на... и говорившего о тесном взаимодействии живой и неживой природы , хозяйственной и духовной деятельности... виде материальных объектов , символов, идей, социальных структур , языков коммуникации...

  • Природа как предмет философского рассмотрения. Экзаменационные вопросы по философии

    Шпаргалка >> Философия

    Отнесения её структуры к тому или иному классу (объектов ); тем самым... отличает надорганическую реальность от царств живой и неживой природы . Мы должны понять, ... только кажущегося подъема" . § 3. ИЕРАРХИЯ ПОТРЕБНОСТЕЙ -АЛЬТЕРНАТИВНЫЕ ПОДХОДЫ Отстаивая идею...

  • Философия, ее предмет, проблемы, структура и функции

    Реферат >> Философия

    Элементами структуры материи являются: неживая природа ; живая природа ; социум... и субъективную диалектику Объект – диалектика внешнего мира, живой и неживой природы , общества и... натуральное хозяйство и сословная иерархия , к промышленно развитому обществу...


  • © 2024
    siamkem.ru - Люди и знаменитости