21.12.2023

Какие соединения серы не являются. Общая характеристика серы


Халькогены — группа элементов, к которой относится сера. Ее химический знак — S — первая буква латинского названия Sulfur. Состав простого вещества записывают с помощью этого символа без индекса. Рассмотрим основные моменты, касающиеся строения, свойств, получения и применения данного элемента. Характеристика серы будет представлена максимально подробно.

Общие признаки и различия халькогенов

Сера относится к подгруппе кислорода. Это 16-я группа в современной длиннопериодной форме изображения периодической системы (ПС). Устаревший вариант номера и индекса — VIA. Названия химических элементов группы, химические знаки:

  • кислород (О);
  • сера (S);
  • селен (Se);
  • теллур (Te);
  • полоний (Po).

Внешняя электронная оболочка вышеперечисленных элементов устроена одинаково. Всего она содержит 6 которые могут участвовать в образовании химической связи с другими атомами. Водородные соединения отвечают составу H 2 R, например, H 2 S — сероводород. Названия химических элементов, образующих с кислородом соединения двух типов: сера, селен и теллур. Общие формулы оксидов этих элементов — RO 2 , RO 3 .

Халькогенам соответствуют простые вещества, которые значительно отличаются по физическим своствам. Наиболее распространенные в земной коре из всех халькогенов — кислород и сера. Первый элемент образует два газа, второй — твердые вещества. Полоний — радиоактивный элемент — редко встречается в земной коре. В группе от кислорода до полония неметаллические свойства убывают и возрастают металлические. Например, сера — типичный неметалл, а теллур обладает металлическим блеском и электропроводностью.

Элемент № 16 периодической системы Д.И. Менделеева

Относительная атомная масса серы — 32,064. Из природных изотопов наиболее распространен 32 S (более 95% по массе). Встречаются в меньших количествах нуклиды с атомной массой 33, 34 и 36. Характеристика серы по положению в ПС и строению атома:

  • порядковый номер — 16;
  • заряд ядра атома равен +16;
  • радиус атома — 0,104 нм;
  • энергия ионизации —10,36 эВ;
  • относительная электроотрицательность — 2,6;
  • степень окисления в соединениях — +6, +4, +2, -2;
  • валентности — II(-),II(+), IV(+), VI (+).

Сера находится в третьем периоде; электроны в атоме располагаются на трех энергетических уровнях: на первом — 2, на втором — 8, на третьем — 6. Валентными являются все внешние электроны. При взаимодействии с более электроотрицательными элементами сера отдает 4 или 6 электронов, приобретая типичные степени окисления +6, +4. В реакциях с водородом и металлами атом притягивает недостающие 2 электрона до заполнения октета и достижения устойчивого состояния. в этом случае понижается до -2.

Физические свойства ромбической и моноклинной аллотропных форм

При обычных условиях атомы серы соединяются между собой под углом в устойчивые цепи. Они могут быть замкнуты в кольца, что позволяет говорить о существовании циклических молекул серы. Состав их отражают формулы S 6 и S 8 .

Характеристика серы должна быть дополнена описанием различий между аллотропными модификациями, обладающими разными физическими свойствами.

Ромбическая, или α-сера — наиболее стабильная кристаллическая форма. Это ярко-желтые кристаллы, состоящие из молекул S 8 . Плотность ромбической серы составляет 2,07 г/см3. Светло-желтые кристаллы моноклинной формы образованы β-серой с плотностью 1,96 г/см3. Температура кипения достигает 444,5°С.

Получение аморфной серы

Какого цвета сера в пластическом состоянии? Это темно-коричневая масса, совершенно не похожая на желтый порошок или кристаллы. Для ее получения нужно расплавить ромбическую или моноклинную серу. При температуре выше 110°С образуется жидкость, при дальнейшем нагревании она темнеет, при 200°С становится густой и вязкой. Если быстро вылить расплавленную серу в холодную воду, то она застынет с образованием зигзагообразных цепей, состав которых отражает формула S n .

Растворимость серы

Некоторые модификации в сероуглероде, бензоле, толуоле и жидком аммиаке. Если медленно охладить органические растворы, то образуются игольчатые кристаллы моноклинной серы. При испарении жидкостей выделяются прозрачные лимонно-желтые кристаллы ромбической серы. Они хрупкие, их легко можно смолоть в порошок. Сера не растворяется в воде. Кристаллы опускаются на дно сосуда, а порошок может плавать на поверхности (не смачивается).

Химические свойства

В реакциях проявляются типичные неметаллические свойства элемента № 16:

  • сера окисляет металлы и водород, восстанавливается до иона S 2- ;
  • при сгорании на воздухе и кислороде образуются ди- и триоксид серы, которые являются ангидридами кислот;
  • в реакции с другим более электроотрицательным элементом — фтором — сера тоже теряет свои электроны (окисляется).

Свободная сера в природе

По распространенности в земной коре сера находится на 15 месте среди химических элементов. Среднее содержание атомов S в составляет 0,05% от массы земной коры.

Какого цвета сера в природе (самородная)? Это светло-желтый порошок с характерным запахом или желтые кристаллы, обладающие стеклянным блеском. Залежи в виде россыпи, кристаллические пласты серы встречаются в районах древнего и современного вулканизма: в Италии, Польше, Средней Азии, Японии, Мексике, США. Нередко при добыче находят красивые друзы и гигантские одиночные кристаллы.

Сероводород и оксиды в природе

В районах вулканизма на поверхность выходят газообразные соединения серы. Черное море на глубине свыше 200 м является безжизненным из-за выделения сероводорода H 2 S. Формула оксида серы двухвалентной — SO 2 , трехвалентной — SO 3 . Перечисленные газообразные соединения присутствуют в составе некоторых месторождений нефти, газа, природных вод. Сера входит в состав каменного угля. Она необходима для построения многих органических соединений. При гниении белков куриного яйца выделяется сероводород, поэтому часто говорят, что у этого газа запах тухлых яиц. Сера относится к биогенным элементам, она необходима для роста и развития человека, животных и растений.

Значение природных сульфидов и сульфатов

Характеристика серы будет неполной, если не сказать, что элемент встречается не только в виде простого вещества и оксидов. Наиболее распространенные природные соединения — это соли сероводородной и серной кислот. Сульфиды меди, железа, цинка, ртути, свинца встречаются в составе минералов сфалерита, киновари и галенита. Из сульфатов можно назвать натриевую, кальциевую, бариевую и магниевую соли, которые образуют в природе минералы и горные породы (мирабилит, гипс, селенит, барит, кизерит, эпсомит). Все эти соединения находят применение в разных отраслях хозяйства, используются как сырье для промышленной переработки, удобрения, стройматериалы. Велико медицинское значение некоторых кристаллогидратов.

Получение

Вещество желтого цвета в свободном состоянии встречается в природе на разной глубине. При необходимости серу выплавляют из горных пород, не поднимая их на поверхность, а нагнетая на глубину перегретый и Еще один метод связан с возгонкой из раздробленных горных пород в специальных печах. Другие способы предусматривают растворение сероуглеродом или флотацию.

Потребности промышленности в сере велики, поэтому для получения элементарного вещества используются его соединения. В сероводороде и сульфидах сера находится в восстановленной форме. Степень окисления элемента равна -2. Проводят окисление серы, повышая это значение до 0. Например, по методу Леблана сульфат натрия восстанавливают углем до сульфида. Затем из него получают сульфид кальция, обрабатывают его углекислым газом и парами воды. Образующийся сероводород окисляют кислородом воздуха в присутствии катализатора: 2H 2 S + O 2 = 2H 2 O +2S. Определение серы, полученной разными способами, порой дает низкие показатели чистоты. Рафинирование или очистку проводят дистилляцией, ректификацией, обработкой смесями кислот.

Применение серы в современной промышленности

Сера гранулированная идет на различные производственные нужды:

  1. Получение серной кислоты в химической промышленности.
  2. Производство сульфитов и сульфатов.
  3. Выпуск препаратов для подкормок растений, борьбы с болезнями и вредителями сельскохозяйственных культур.
  4. Серосодержащие руды на горно-химических комбинатах перерабатывают для получения цветных металлов. Сопутствующим производством является сернокислотное.
  5. Введение в состав некоторых сортов сталей для придания особых свойств.
  6. Благодаря получают резину.
  7. Производство спичек, пиротехники, взрывчатых веществ.
  8. Использование для приготовления красок, пигментов, искусственных волокон.
  9. Отбеливание тканей.

Токсичность серы и ее соединений

Пылевидные частицы, обладающие неприятным запахом, раздражают слизистые оболочки носовой полости и дыхательных путей, глаза, кожу. Но токсичность элементарной серы считается не особенно высокой. Вдыхание сероводорода и диоксида может вызвать тяжелое отравление.

Если при обжиге серосодержащих руд на металлургических комбинатах отходящие газы не улавливают, то они поступают в атмосферу. Соединяясь с каплями и парами воды, оксиды серы и азота дают начало так называемым кислотным дождям.

Сера и ее соединения в сельском хозяйстве

Растения поглощают сульфат-ионы вместе с почвенным раствором. Снижение содержания серы ведет к замедлению метаболизма аминокислот и белков в зеленых клетках. Поэтому сульфаты применяют для подкормок сельскохозяйственных культур.

Для дезинфекции птичников, подвалов, овощехранилищ простое вещество сжигают или обрабатывают помещения современными серосодержащими препаратами. Оксид серы обладает антимикробными свойствами, что издавна находит применение в производстве вин, при хранении овощей и фруктов. Препараты серы используют в качестве пестицидов для борьбы с болезнями и вредителями сельскохозяйственных культур (мучнистой росой и паутинным клещом).

Применение в медицине

Большое значение изучению лечебных свойств желтого порошка придавали великие врачеватели древности Авиценна и Парацельс. Позже было установлено, что человек, не получающий достаточное количество серы с пищей, слабеет, испытывает проблемы со здоровьем (к ним относятся зуд и шелушение кожи, ослабление волос и ногтей). Дело в том, что без серы нарушается синтез аминокислот, кератина, биохимических процессов в организме.

Медицинская сера включена в состав мазей для лечения заболеваний кожи: акне, экземы, псориаза, аллергии, себореи. Ванны с серой могут облегчить боли при ревматизме и подагре. Для лучшего усвоения организмом созданы водорастворимые серосодержащие препараты. Это не желтый порошок, а мелкокристаллическое вещество белого цвета. При наружном использовании этого соединения его вводят в состав косметического средства для ухода за кожей.

Гипс давно применяется при иммобилизации травмированных частей тела человека. назначают как слабительное лекарство. Магнезия понижает артериальное давление, что используется в лечении гипертонии.

Сера в истории

Еще в глубокой древности неметаллическое вещество желтого цвета привлекало внимание человека. Но только в 1789 году великий химик Лавуазье установил, что порошок и кристаллы, найденные в природе, состоят из атомов серы. Считалось, что неприятный запах, возникающий при ее сжигании, отпугивает всякую нечисть. Формула оксида серы, который получается при горении, — SO 2 (диоксид). Это токсичный газ, его вдыхание опасно для здоровья. Несколько случаев массового вымирания людей целыми деревнями на побережьях, в низинах ученые объясняют выделением из земли либо воды сероводорода или диоксида серы.

Изобретение черного пороха усилило интерес к желтым кристаллам со стороны военных. Многие битвы были выиграны благодаря умению мастеров соединять серу с другими веществами в процессе изготовления Важнейшее соединение — серную кислоту — тоже научились применять очень давно. В средние века это вещество называли купоросным маслом, а соли — купоросами. Медный купорос CuSO 4 и железный купорос FeSO 4 до сих пор не утратили своего значения в промышленности и сельском хозяйстве.

Сера (лат. – Sulfur, S) – макроэлемент. В нашем организме ее довольно много. Вся она входит в состав многих органических соединений. Формирует структуру белков, активирует ферменты, повышает иммунитет. Это положительно сказывается на состоянии всех тканей и систем органов.

История открытия

Этот неметалл был известен человечеству с древнейших времен. Его применяли в бытовых, медицинских, и военных целях. Соединения серы использовали для отбеливания тканей, лечения кожных заболеваний, в производстве косметических средств.

Входила в состав греческого огня, зажигательного вещества, предназначавшегося для уничтожения неприятеля. Она шла на изготовление черного дымного пороха, который помимо военных целей нашел применение в производстве фейерверков.

Не обошлось и без мистики. Алхимики использовали серу для поисков философского камня. Как и всякое горючее вещество, ее считали даром божьим. Сгорание её в атмосфере сопровождалось образованием сернистого ангидрида, SO 2 . Этот удушливый газ обладал неприятным запахом. Точно так же неприятен был и другой газ – сероводород, H 2 S, источавший аромат тухлых яиц. По тогдашним представлениям такие неприятные запахи могли исходить только от самого дьявола.

В старину серу выплавляли из металлических руд, в состав которых она входила. При нагревании руды выделялось вещество, и застывало в виде светло-желтых кристаллов. Происхождение названия точно не известно. Полагают, что лат. Sulfur берет свое название от индоевропейского слова, обозначающего горючее вещество. То же самое касается и славянского «сера». Хотя некоторые считают его производным от старославянского «сира», светло-желтый.

Физические и химические свойства

В таблице Менделеева S значится под №16, и расположена в 16 группе, в 3 периоде. Ее атомная масса равна 32. На внешней орбите атома серы вращаются 6 электронов. До наполнения орбиты не хватает 2 электронов.

При взаимодействии с некоторыми веществами она присоединяет эти 2 электрона, являясь при этом двухвалентной. Но радиус атома серы сравнительно большой. Поэтому она может не только присоединять, но и отдавать электроны, и ее валентность колеблется от 2 до 6.

В обычном состоянии S представляет собой твердые, но хрупкие светло-желтые кристаллы с температурой плавления 112,5 0 С и плотностью около 2 г/см 3 . Молекула состоит из 8 атомов, и по конфигурации напоминает корону. В зависимости от режима нагревания она приобретает несколько аллотропных модификаций – разновидностей, отличающихся физическими свойствами и молекулярной структурой.

Сера не растворима в воде, но хорошо растворяется в ряде органических растворителей, в т.ч. в спирте и в бензине. Очень плохо проводит тепло и электрический ток. В природе может встречаться как в чистом виде (самородная сера), так и в виде соединений, сульфидов и сульфатов. Серосодержащие соединения входят в состав горных пород, растворены в воде морей, озер. Земная кора содержит 4,3 Х 10 -3 % серы. По этому показателю среди других элементов таблицы Менделеева она занимает 15 место. Однако в глубжележащих слоях земли, в мантии, её значительно больше.

Физиологическое действие

Казалось бы, какой может быть толк для нашего здоровья от горючего вещества, многие соединения которого обладают неприятным запахом, и оказывают удушающее действие. Но ведь сера является макроэлементом, и ее содержание в организме взрослого человека составляет около 140 г. Больше только двух других макроэлементов – кальция и фосфора.

Данное вещество в нашем организме вовсе не является балластом. Ведь Природа ничего не делает зря, каждый шаг ее продуман, и каждый элемент играет свою роль. Но какая роль у серы? Никакая. Тогда какие позитивные эффекты она оказывает? Все.

Парадокс этот лишь кажущийся. Да, сама по себе, взятая в чистом виде, сера, возможно, и не приносит пользу. Зато в соединениях она проявляет себя во всей своей красе. Достаточно упомянуть о сульфгидрильных группах. Эти группы (тиоловые группы, SH-группы) образованы остатками аминокислоты цистина.

Это протеиногенная аминокислота, т.е., та, что входит в состав белков. Сульфгидрильные группы, как следует из названия и обозначения, состоят из атомов водорода и серы. Две соседние SН-группы образуют т.н. дисульфидные мостики или дисульфидные группы (S-S-группы), состоящие из двух атомов серы.

Вот эти дисульфидные группы формируют структуру белков. Каждый белок по сути своей является полипептидом – соединением большого количества пептидов, образованных аминокислотными остатками. Последовательность пептидов в цепи – это первичная структура. Цепь спирально закручивается – это вторичная структура. Спирально закрученная цепь может принимать различные формы (нить, клубок) – это третичная структура. Наконец, молекулы ряда белков могут быть образованы не одной, а несколькими полипептидными цепями, которые соединяются между собой в строго определенных местах. Это четвертичная структура белка.

Третичная и четвертичная структуры определяют пространственную конфигурацию или конформацию белковой молекулы. Именно от конформации зависят свойства белка. Под действием температуры, химических соединений, и других фактов третичная и четвертичная структуры нарушаются. Данный процесс именуют денатурацией белка. Денатурированный белок утрачивает свои свойства.

Сера в составе сульфгидрильных групп и дисульфидных мостиков формирует своего рода жесткий каркас, который помогает молекуле белка сохранить конформацию. Благодаря этому белок сохраняет свойства.

Известно, что ферменты, эти катализаторы биохимических реакций, являются белками. Следовательно, сера помогает ферментам сохранить их активность. И это действительно так. Под действием повреждающих факторов дисульфидные мостики разрушаются, и фермент инактивируется.

Ферменты – это не полностью белки. В них присутствует небелковая часть, кофермент. В роли коферментов могут выступать витамины, витаминоподобные вещества, другие органические соединения, и даже металлы (металлоферменты). Сульфгидрильные группы обеспечивают связь апофермента (беловой составляющей фермента) и кофермента.

Ценность серы не ограничивается формирование сульфгидрильных групп и дисульфидных мостиков. Она входит в состав многих других биологически активных веществ. К серосодержащим аминокислотам помимо вышеупомянутого цистеина и его производного цистина относятся тауирн и метионин. Таурин – составная часть таурохолевой кислоты, одного из желчных компонентов. А производное метионина, S -Метилметионин, более известный как вит. U, оказывает антиульцерогенное действие – предотвращает развитие язвенной болезни желудка и 12-перстной кишки.

В составе этих соединений S регулирует функцию систем органов, и влияет на жизненно важные процессы:

Сердечно-сосудистая система

  • нормализует артериальное давление (АД) и предотвращает развитие гипертонической болезни
  • укрепляет сосудистые стенки
  • предупреждает развитие сосудистого атеросклероза
  • повышает силу сердечных сокращений.

Кровь

  • стимулирует синтез эритроцитов
  • в составе гемоглобина обеспечивает транспорт кислорода и углекислого газа
  • нормализует свертывание крови
  • предотвращает патологическое тромбообразование.

Дыхательная система

  • предотвращает спазм бронхов
  • улучшает газообмен в легочных альвеолах.

Пищеварительная система

  • участвует в нейтрализации токсинов печенью и их последующем выведении с желчью через кишечник
  • укрепляет слизистые оболочки ЖКТ (желудочно-кишечного тракта)
  • предотвращает развитие воспалительных процессов и язвообразования
  • эмульгирует жиры и улучшает их всасывание в тонком кишечнике
  • облегчает всасывание других питательных веществ (нутриентов) в ЖКТ
  • улучшает перистальтику ЖКТ
  • позитивно влияет на состояние физиологической микрофлоры кишечника, синтезирующей витамины группы В
  • улучшает перистальтику ЖКТ, способствует формированию каловых масс.

Нервная система

  • улучшает мозговой кровоток, препятствует формированию тромбов в мозговых сосудах
  • позитивно влияет на эмоционально-волевую сферу
  • улучшает мышление и память
  • нормализует сон
  • замедляет возрастные дегенеративные изменения с исходом в болезнь Альцгеймера
  • оказывает противосудорожное действие.

Опорно-двигательный аппарат

  • повышает мышечную силу и выносливость
  • укрепляет связочный аппарат, кости суставные связки
  • уменьшает интенсивность суставных и мышечных болей
  • снижает риск костных переломов, а при состоявшихся переломах ускоряет срастание костных отломков
  • предотвращает развитие артритов.

Кожа и придатки

  • повышает прочность и эластичность кожи
  • аналогичным образом действует на волосы, предотвращая их выпадение
  • в составе меланина защищает кожу от повреждающего действия солнечных лучей
  • ускоряет заживление раневых повреждений кожи
  • замедляет процессы естественного старения с появлением морщин, растяжек, пигментных пятен.

Мочеполовая система

  • наряду с другими факторами регулирует процессы фильтрации и реабсорбции (обратного всасывания) в почечных канальцах с образованием мочи
  • способствует удалению с мочой токсических веществ и продуктов обмена
  • предотвращает появление тканевых отеков
  • у мужчин обеспечивает сперматогенез, у женщин – овуляцию, нормализует менструальный цикл
  • в родах в составе окситоцина повышает сократительную активность матки, предотвращает развитие кровотечений в родах и в послеродовом периоде
  • у обоих полов формирует либидо.

Обмен веществ

  • в составе ферментов и гормонов участвует во всех видах обмена: белковом, углеводном, жировом (липидном), и водно-солевом
  • регулирует анаболизм и катаболизм (синтез и расщепление) белков
  • предотвращает ожирение и сахарный диабет
  • нормализует кислотно-основной баланс
  • предотвращает чрезмерное закисление (ацидоз) и ощелачивание (алкалоз) в тканях при различных патологических процессах.

Другие эффекты

Сера включена в состав антител-иммуноглобулинов, обеспечивающих специфический гуморальный иммунитет против патогенных бактерий, вирусов, грибков. Кроме того, она входит в состав лизоцима. Этот фермент в организме человека тоже уничтожает патогенные бактерии. S включена в состав многих антиоксидантных систем. Она угнетает свободнорадикальное окисление, в ходе которого повреждаются мембраны клеток.

Благодаря этому макроэлементу поврежденные клеточные мембраны восстанавливаются. Она уменьшает тяжесть воспалительных реакций с болью и повышением температуры. Она угнетает все 3 фазы воспаления:

  1. альтерацию (повреждение)
  2. экссудацию (появление жидкостного выпота)
  3. пролиферацию (патологический клеточный рост).

S повышает устойчивость организма к действию ионизирующей радиации, и снижает риск появления злокачественных опухолей. В общем, сера объединила в себе все позитивные черты ферментов, аминокислот, витаминов, в состав которых она входит.

Суточная потребность

Организму взрослого человека для нормальной жизнедеятельности необходимо 0,5-1,2 г. серы. Хотя некоторые считают, что потребность в этом макроэлементе значительно выше. Приводят цифры 3-4 г, и даже 4-5 г. Вероятно, многое зависит от состояния здоровья и образа жизни. Интенсивные занятия спортом, физические нагрузки, восстановление после тяжелых заболеваний и переломов, беременность – все это повышает потребность в S.

Причины и признаки дефицита

Специфических причин, приводящих только лишь к дефициту серы, не существует. Недостаток этого макроэлемента может быть связан с малым количеством серосодержащих аминокислот. Некоторые из них, в частности, метионин, являются для нас незаменимыми, и поступают в организм только в составе пищи.

Но недостаток метионина сам по себе вряд ли приведет к снижению уровня серы в организме. Ведь этот макроэлемент присутствует во многих животных и растительных продуктах, и к его дефициту может привести разве что полное голодание или жесткие ограничительные диеты.

Среди других причин:

  • тяжелые заболевания
  • повышенные физические нагрузки
  • болезни ЖКТ, дисбактериоз
  • беременность
  • врожденный дефицит некоторых ферментов, ответственных за усваивание серосодержащих продуктов.

Признаки дефицита столь же неспецифичны, как и его причины. Пациенты могут жаловаться на общую слабость, низкую работоспособность. Этому же способствует снижение мышечного тонуса и силы. Со стороны опорно-двигательного аппарата отмечается остеопороз, частые артрозы и артриты.

Возрастает риск сердечно-сосудистых заболеваний (гипертоническая болезнь, атеросклероз), ожирения, сахарного диабета, а также онкологических заболеваний. Из-за низкого иммунитета появляется восприимчивость к инфекциям. В результате пищеварительных расстройств ухудшается усваивание других нутриентов. Дети отстают в росте и в развитии.

Продукты содержащие серу

Больше всего серы находится в пище, богатой белком, где она включена в состав аминокислот. Поэтому основными поставщиками этого макроэлемента для нас являются животные продукты – мясо и мясные субпродукты, прежде всего, печень. Но и в растительных белках, содержащихся в бобовых, зерновых, орехах, её тоже немало.

Продукт Содержание, мг/100 г
Мясо кролика 1050
Рыба (горбуша, камбала, сардина) 1050
Курица, куриные яйца 1050
Перепелиные яйца 200
Индейка, печень индейки 248
Говядина 230
Говяжья печень 239
Арахис 350
Твердые сорта сыра 260
Соя 245
Баранина 230
Свинина 230
Свиная печень 187
Сушеные абрикосы 170
Сушеный персик 240
Ячмень 120
Кофе 110
Какао 200
Чай 215

Также сера в виде сульфатов и сероводорода присутствует в минеральных водах. Правда, сульфатные воды принимают в строго определенных целях для лечения расстройств ЖКТ, где они оказывают желчегонное и послабляющее действие. Что касается сероводородных вод, они и вовсе не предназначены для приема внутрь. Их используют наружно в качестве ванн.

Синтетические аналоги

В медицинских целях используют очищенную, неочищенную, и коллоидную серу. Очищенная сера (Sulfur depuratum) или Серный цвет (Flos sulfuris) представляет собой нерастворимый в воде желто-лимонный порошок. Очищенная оказывает комплексное действие:

Препараты очищенной серы могут применяться как внутрь, в виде порошка, так и наружно, в виде присыпок и мазей. Очищенная S для употребления внутрь показана при расстройствах ЖКТ, сопровождающихся запорами, а также при частых ангинах, бронхитах, и других простудных заболеваниях.

Любопытный факт: некогда, еще в советские времена, была инъекционная форма очищенной серы – Сульфозин. Его использовали в качестве пирогенной терапии.

Внутримышечные инъекции Сульфозина сопровождались резким скачком температуры. По замыслу это должно было сопровождаться антимикробным эффектом и ускорением обменных процессов.

Поэтому Сульфозин использовали в лечении некоторых видов инфекций, в частности, сифилиса, а также при органических расстройствах ЦНС. Но самую громкую и недобрую славу препарат приобрел после его использования в психиатрии. Инъекции Сульфозина (на сленге – сульфы) очень болезненны.

Поэтому к ним прибегали для устранения психомоторного возбуждения у душевнобольных, а также для «лечения» инакомыслящих. В настоящее время терапия Сулфозином признана неэффективной и варварской, и препарат остался в прошлом.

Коллоидная сера (Sulfur colloidale) также используется в дерматологической практике. Будучи водорастворимой, она более эффективна, чем очищенная и осажденная.

В лечении кожных заболеваний, а также некоторых видов химических ожогов, хорошо себя зарекомендовал другой серосодержащий препарат – Натрия тиосульфат. Но показания к применению Натрия тиосульфата не ограничиваются только лишь кожей.

Его принимают внутрь и вводят внутривенно как антидот (противоядие) при отравлении солями тяжелых металлов. Натрия тиосульфат назначают при аллергиях, некоторых заболеваниях опорно-двигательного аппарата. Доказана его результативность в лечении определенных форм женского бесплодия.

Сероводород, будучи токсичным, в терапевтических концентрациях тоже позитивное влияет на организм. Его применяют в виде ванн. Растворенный в воде газ проникает через кожу, и оказывает лечебное действие.

Сероводородные ванны показаны при заболеваниях кожи, ЖКТ, опорно-двигательного аппарата, мужской и женской репродуктивной системы. Их принимают в рамках комплексного лечения гипертонической болезни, сахарного диабета.

Помимо этого сера включена в состав многих других препаратов – БАДов, гомеопатических средств, косметики.

Метаболизм

Значительная часть S поступает в организм в составе серосодержащих аминокислот. Некоторое количество может быть представлено неорганической формой, в виде солей серной и сернистой кислот, сульфатов и сульфитов.

Органическая сера всасывается в тонком кишечнике намного лучше, в то время как значительная часть неорганических соединений, так и не всосавшись, выделяется через кишечник.

Примечательно, что некоторая часть S используется микрофлорой кишечника для собственных нужд. При этом образуется газ сероводород, обладающий неприятным запахом тухлых яиц. Сероводород наряду с другими компонентами придает зловоние кишечным газам.

Сероводород может образовываться и в желудке при заболеваниях, сопровождающихся замедлением эвакуации и застоем пищи. При этом пациенты жалуются на характерную отрыжку тухлыми яйцами. В небольших концентрациях этот газ оказывает позитивное действие. При раздражении кишечника сероводородом рефлекторно запускается перистальтика.

Серосодержащие соединения способны поступать в организм через кожу и через легкие. Значительная часть макроэлемента сосредоточена в тканях, где наиболее интенсивно протекают обменные процессы. Это скелетные мышцы, миокард, печень, кости, головной мозг. В крови сера находится в гемоглобине эритроцитов и в альбумине плазмы. Хотя некоторое ее количество растворено непосредственно в плазме.

Здесь, как и в других биологических жидкостях организма, она в основном присутствует в виде сулфат-анионов, отрицательно заряженных ионов SO 4 . В других тканях она находится в органической и в неорганической форме – в виде сульфитов, сульфатов, тиоэфиров, тиолов, тиоцианатов, тиомочевины.

Довольно много S сосредоточено в коже, в основном, в коллагене и в меланине. Выводится сера преимущественно с мочой в чистом виде или в виде сульфатов.

Взаимодействие с другими веществами

Свинец, молибден, барий, селен, мышьяк, ухудшают усваивание серы. Фтор и железо, напротив, позитивно влияют на этот процесс.

Признаки избытка

Даже при чрезмерном употреблении серосодержащих продуктов добиться избытка серы в организме невозможно. Да и сама по себе в чистом виде S не токсична, чего не скажешь о серосодержащих соединениях. Некоторые из них, в т.ч. сероводород, диоксид серы, в газообразном состоянии присутствуют в промышленных выбросах в атмосферу.

Сероводород может выделяться в составе вулканических газов, или же образовываться в процессе гниения белковых субстанций. Вдыхание этих веществ приводит к печальным последствиям. Так, сероводород блокирует ферменты, осуществляющие тканевое дыхание. В этом отношении он действует подобно другим ядам, цианидам.

А диоксид серы, вступая в реакцию с атмосферной влагой, образует серную кислоту, которая при вдыхании вызывает деструкцию легочной ткани. Вдыхание серосодержащих газов в высокой концентрации быстро приводит к удушью, потере сознания, судорогам, и к гибели.

Но даже хроническая интоксикация этими веществами в малых количествах не сулит ничего хорошего. Поражается кожа и слизистые оболочки дыхательных путей, глаз, полости рта, ЖКТ.

Это проявляется хроническим бронхитом, эмфиземой легких. Со стороны глаз отмечается снижение остроты зрения, хронический конъюнктивит. На коже формируется экзема, дерматиты с покраснением и сыпью. Пациенты жалуются на общую слабость, снижение мыслительных способностей.

Поражение ЖКТ, печени, проявляется тошнотой, снижением аппетита, неустойчивым стулом. У таких пациентов велика опасность злокачественной онкологии.

Для снижения токсичности серосодержащих продуктов рекомендуется в больших количествах употреблять яйца, твердые сорта сыра, мясо птицы, жирную свинину, говядину.

Однако при употреблении пищевых продуктов подстерегает другая опасность. Дело в том, что диоксид серы в качестве консерванта присутствует во многих кондитерских изделиях, копченостях, сухофруктах, алкогольных и безалкогольных напитках, фруктовых соках. И даже длительно хранящиеся в складских помещениях «свежие» овощи и фрукты содержат этот консервант. Его обозначают как Е220. Это не что иное, как диоксид серы.

Правда, производители и реализаторы пищевой продукции уверяют, что количество Е220 в продуктах ничтожно мало, и потому он нисколько не опасен. А чтобы нанести вред здоровью, нужно съесть огромное количество такой пищи.

Но ведь рацион современного человека, проживающего в городской черте, практически полностью состоит из таких продуктов. Поэтому уверения в безопасности серосодержащих консервантов вызывают большие сомнения.

Сера (лат. Sulfur) S, химический элемент VI группы периодической системы Менделеева; атомный номер 16, атомная масса 32,06. Природная Сера состоит из четырех стабильных изотопов: 32S (95,02%), 33S (0,75%), 34S (4,21%), 36S (0,02%). Получены также искусственные радиоактивные изотопы 31S (T½ = 2,4 сек), 35S (T½ = 87,1 сут), 37S (Т½= 5,04 мин) и другие.

Сера относится к весьма распространенным химическим элементам; встречается в свободном состоянии (самородная сера) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов Серы. В биосфере образуется свыше 150 минералов. Широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H2S и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации Серы - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9·10-2%), подземных водах, в озерах и солончаках. В биосфере происходит круговорот Серы: она приносится на материки с атмосферными осадками и возвращается в океан со стоком.

Сера - твердое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая α-S лимонно-желтого цвета, плотность 2,07 г/см3, tпл 112,8 °С, устойчива ниже 95,6 °С; моноклинная β-S медово-желтого цвета, плотность 1,96 г/см3, tпл119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S8 с энергией связи S-S 225,7 кдж/моль.

Сера - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и других).

Конфигурация внешних электронов атома S 3s2Зр4. В соединениях Сера проявляет степени окисления -2, +4, +6. Сера химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N2, I2, Au, Pt и инертных газов. С О 2 на воздухе выше 300 °С образует оксиды: SO2 - сернистый ангидрид и SO3- серный ангидрид, из которых получают соответственно сернистую кислоту и серную кислоту, а также их соли сульфиты и сульфаты.

При нагревании Сера взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800-900 °С пары Серы реагируют с углеродом, образуя сероуглерод CS2. Соединения Серы с азотом (N4S4 и N2S5) могут быть получены только косвенным путем.

На воздухе сера горит, образуя сернистый ангидрид - бесцветный газ с резким запахом:


Восстановительные свойства серы проявляются в реакциях серы и с другими неметаллами, однако при комнатной температуре сера реагирует только со фтором:

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов (дихлорид серы и дитиодихлорид):

При избытке серы также образуются разнообразные дихлориды полисеры типа SnCl2.

При нагревании сера также реагирует с фосфором, образуя смесь сульфидов фосфора, среди которых - высший сульфид P2S5:

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

(сероводород)

(сероуглерод)

При нагревании сера взаимодействует со многими металлами, часто - весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

Полученный сплав называется серной печенью.

С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании:

При увеличении температуры в парах серы происходят изменения в количественном молекулярном составе. Число атомов в молекуле уменьшается:

При 800-1400 °C пары состоят в основном из двухатомной серы:

А при 1700 °C сера становится атомарной:

Серу получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. Источник сернистого водорода для производства Серы - коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H2S; наибольшее значение имеют следующие: 1) H2S извлекают из газов раствором моногидротиоарсената натрия:

Na2HAsS2O2 + H2S = Na2HAsS3O + Н2О.

Затем продувкой воздуха через раствор осаждают Сера в свободном виде:

NaHAsS3O + ½O2 = Na2HAsS2O2 + S.

2) H2S выделяют из газов в концентрированном виде. Затем его основные масса окисляется кислородом воздуха до Серы и частично до SO2. После охлаждения H2S и образовавшиеся газы (SO2, N2, CO2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:

2H2S + SO2 = 3S + 2Н2О.

В основе получения Сера из SO2 лежит реакция восстановления его углем или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.

Сера - одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под № 16.

Об одном из самых древних (хотя и гипотетических!) применений серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных оснований для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Самородная сера

Одна из причин этой известности - распространенность самородной серы в странах, древнейших цивилизаций. Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент № 16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретен черный порох. Ведь сера (вместе с углем и селитрой) - непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера - один из важнейших видов сырья для многих химических производств . И в этом причина непрерывного роста мирового производства серы .

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы - это порода с вкраплениями серы.

Когда образовались эти вкрапления - одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т. е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

ИЗ ДРЕВНИХ И СРЕДНЕВЕКОВЫХ КНИГ.

«Сера применяется для очищения жилищ, так как многие держатся мнения, что запах и горение серы могут предохранить от всяких чародейств и прогнать всякую нечистую силу».

Плиний Старший.

«Естественная история». I в. н.э.

«Если травы чахлы, бедны соками, а ветви и листва деревьев имеют окраску тусклую, грязную, темноватую вместо блестящего зеленого цвета, это признак, что подпочва изобилует минералами, в которых господствует сера».

«Если руда очень богата серой, ее зажигают на широком железном листе с множеством отверстий, через которые сера вытекает в горшки, наполненные доверху водой».

«Сера входит также в состав ужасного изобретения - порошка, который может метать далеко вперед куски железа, бронзы или камня - орудие войны нового типа».

Агрикола.

«О царстве минералов». XVI в.

КАК ИСПЫТЫВАЛИ СЕРУ в XIV ВЕКЕ. «Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша...»

Этот своеобразный метод определения качества материала на слух (применительно к сере) может быть использован и сейчас. Экспериментально подтвердилось, что «трещит» только сера, содержащая не больше одного процента примесей. Иногда дело не ограничивается только треском - кусок серы раскалывается на части.

УДУШАЮЩИЙ СЕРНЫЙ ГАЗ. Как известно, выдающийся естествоиспытатель древности Плиний Старший погиб в 79 г. н.э. при извержение вулкана. Его племянник в письме историку Тациту писал: «... Вдруг раздались раскаты грома, и от горного пламени покатились вниз черные серные пары. Все разбежались. Плиний поднялся и, опираясь на двух рабов, думал тоже уйти; но смертоносный пар окружил его со всех сторон, его колени подогнулись, он снова упал и задохся».

«Черные серные пары», погубившие Плиния, состояли, конечно, не только из парообразной серы. В состав вулканических газов входят и сероводород, и двуокись серы. Эти газы обладают не только резким запахом, но и большой токсичностью. Особенно опасен сероводород. В чистом виде он убивает человека почти мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом , входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти. Сернистый газ (двуокись серы) менее токсичен, однако выпуск его в атмосферу приводил к тому, что вокруг металлургических заводов гибла вся растительность. Поэтому на всех предприятиях, производящих или использующих эти газы, вопросам техники безопасности уделяется особое внимание.

СЕРНИСТЫЙ ГАЗ И СОЛОМЕННАЯ ШЛЯПКА. Соединяясь с водой, сернистый газ образует слабую сернистую кислоту H 2 SO 3 , существующую только в растворах. В присутствии влаги сернистый газ обесцвечивает многие красители. Это свойство используется для отбелки шерсти, шелка, соломы. Но такие соединения, как правило, не обладают большой стойкостью, и белые соломенные шляпки со временем приобретают первоначальную грязно-желтую окраску.

HE АСБЕСТ, ХОТЯ И ПОХОЖ. Сернистый ангидрид SO 3 в обычных условиях представляет собой бесцветную очень летучую жидкость, кипящую при 44,8°С. Твердеет он при - 16,8°С и становится очень похожим на обыкновенный лед. Но есть и другая - полимерная модификация твердого серного ангидрида (формулу его в этом случае следовало бы писать (SO 3) n . Внешне она очень похожа на асбест, ее волокнистую структуру подтверждают рентгенограммы. Строго определенной точки плавления эта модификация не имеет, что свидетельствует о ее неоднородности.

ГИПС и АЛЕБАСТР. Гипс CaSO 4 -2H 2 O - один из самых распространенных минералов. Но распространенные в медицинской практике «гипсовые шипы» делаются не из природного гипса, а из алебастра. Алебастр отличается от гипса только количеством кристаллизационной воды в молекуле, его формула 2CaSO 4 -H 2 O. При «варке» алебастра (процесс идет при 160-170°С в течение 1,5-2 часов) гипс теряет три четверти кристаллизационной воды, и материал приобретает вяжущие свойства. Алебастр жадно захватывает воду, при этом происходит быстрая беспорядочная кристаллизация. Разрастись кристаллики не успевают, но сплетаются друг с другом; масса, образованная ими, в мельчайших подробностях воспроизводит форму, в которой происходит твердение. Химизм происходящего в это время процесса обратен происходящему при варке: алебастр превращается в гипс. Поэтому отливка - гипсовая, маска - гипсовая, повязка - тоже гипсовая, а делаются они из алебастра.

ГЛАУБЕРОВА СОЛЬ. Соль Na 2 SO 4 *10H 2 O, открытая крупнейшим немецким химиком XVII в. Иоганном Рудольфом Глаубером и названная в его честь, до сих пор широко применяется в медицине, стеклоделии, кристаллографических исследованиях. Глаубер так описывал ее: «Эта соль, если она хорошо приготовлена, имеет вид льда; она образует длинные, совершенно прозрачные кристаллы, которые растапливаются на языке, как лед. У нее вкус обыкновенной соли, без всякой едкости. Брошенная на пылающие угли, она не растрескивается с шумом, как обыкновенная кухонная соль, и не воспламеняется со взрывом, как селитра. Она без запаха и выносит любую степень жара. Ее можно применять с выгодой в медицине как снаружи, так и внутрь. Она заживляет свежие раны, не раздражая их. Это превосходное внутреннее лекарство: будучи растворена в воде и дана больному, она очищает кишки».

Минерал глауберовой соли называется мирабилитом (от латинского «mimbilis» - удивительный). Название происходит от имени, которое дал Глаубер открытой им соли; он назвал ее чудесной. Крупнейшее в мире разработки этого вещества находятся в нашей стране, чрезвычайно богата глауберовой солью вода знаменитого залива (теперь озера) Кара-Богаз-Гол.

СУЛЬФИТЫ, СУЛЬФАТЫ, ТИОСУЛЬФАТЫ... Если вы фотолюбитель, вам необходим фиксаж, т. е. натриевая соль серноватистой (тиосерной) кислоты H 2 S 2 O 3 . Тиосульфат натрия Na2S2O3 (он же гипосульфит) служил поглотителем хлора в первых противогазах. Если вы порезались во время бритья, кровь можно остановить кристаллом алюмокалиевых квасцов KAl(SO 4) 2 -12H 2 O. Если вы хотите побелить потолки, покрыть медью какой-либо предмет или уничтожить вредителей в саду - вам не обойтись без темносиних кристаллов медного купороса CuSO 4 *5H 2 O. Если врачи порекомендовали вам очистить желудок, воспользуйтесь горькой солью MgSO4. (Она же придает горький вкус морской воде.)

Широко используются также железный купорос FeSO 4 *7H2O, хромовые квасцы K 2 SO 4 Cr 2 (SO 4) 3 *2H 2 O и многие другие соли серной, сернистой и тиосерной кислот.

КИНОВАРЬ. Если в лаборатории разлили (возникла опасность отравления ртутными парами!), ее первым делом собирают, а те места, из которых серебристые капли не извлекаются, засыпают порошкообразной серой. Ртуть и сера вступают в реакцию даже в твердом состоянии - при простом соприкосновении. Образуется кирпично-красная киноварь - сульфид ртути - химически крайне инертное и безвредное вещество. Выделить ртуть из киновари несложно. Многие другие металлы, в частности железо, вытесняют ртуть из киновари.

СЕРОБАКТЕРИИ. В природе постепенно происходит круговорот серы, подобный круговороту азота или углерода . Растения потребляют серу - ведь ее атомы входят в состав белка. Растения берут серу из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород (отсюда - отвратительный запах гниения). Но есть так называемые серобактерии, которым вообще не нужна органическая пища. Они питаются сероводородом, и в их организмах в результате реакции между H 2 S, CO 2 и O 2 образуются углеводы и элементная сера. Серобактерии нередко оказываются переполнены крупинками серы - почти всю их массу составляет сера с очень небольшой «добавкой» органических веществ.

СЕРА - ФАРМАЦЕВТАМ. Все сульфамидные препараты - сульфидин, сульфазол, норсульфазол, сульгин, сульфадимезин, стрептоцид и другие подавляют активность многочисленных микробов. И все эти лекарства - органические соединения серы. После появления антибиотиков роль сульфамидных препаратов несколько уменьшилась. Впрочем, и многие антибиотики можно рассматривать как органические производные серы. В частности, она обязательно входит в состав пенициллина.

Мелкодисперсная элементная сера - основа мазей, применяемых при лечении грибковых заболеваний кожи.

ЧТО МОЖНО ПОСТРОИТЬ ИЗ СЕРЫ. В 70-х годах в некоторых странах мира производство серы превысило потребности в ней. Поэтому сере стали искать новые применения, прежде всего в таких материалоемких областях, как строительство. В результате этих поисков появились серный пенопласт - как теплоизоляционный материал, бетонные смеси, в которых серой частично или полностью заменен портландцемент, покрытия для автострад, содержащие элементную серу.

ЧЕРНАЯ СЕРА. Соединение необычного состава S 4 N 4 получено американскими химиками в конце 70-х годов. Это вещество получалось при взаимодействии безводного аммиака с одним из хлоридов серы. Соединение - чрезвычайно нестойкое, разлагается со взрывом, и хранят его либо при очень высоком давлении, либо под слоем бензола. В этих оранжево-красных кристаллах обнаружили черные прожилки, которые, как оказалось, состоят из элементной серы. Черная сера из тетранитрида оказалась новой аллотропной модификацией давно известного простого вещества.

НЕМЕТАЛЛ - МЕТАЛЛ. В 1980 г. журнал «Письма в ЖЭТФ» опубликовал сообщение о том, что сера при высоком давлении может переходить в металлическое и даже сверхпроводящее состояние.


© 2024
siamkem.ru - Люди и знаменитости